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The maximum independent set problem  (MIS)

Each node has a label 𝑛! = {0; 1}

Space of solutions 𝑆 = 0; 1 " and 𝑆 = 2"

The MIS problem is a NP-complete problem

Associated cost function 𝐶 𝑧#, … , 𝑧" = −∑!$#" 𝑛! +𝑈∑ !,& ∈( 𝑛!𝑛& with 𝑈 ≫ 1

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (WH Freeman & Co., New York, 1979)



Independent sets in bipartite graphs [DFJ02]

[DFJ02] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”

𝐿 𝑅

Let 𝐺 = 𝐿 ∪ 𝑅, 𝐸 , 𝐿 = 𝑅 = 𝑛 be a Δ −regular bipartite graph 

Definition: We define 𝐼 𝛼, 𝛽 as the set of independent sets of 𝐺 with 𝛼𝑛 vertices in 𝐿 and 𝛽𝑛 vertices in 
𝑅.

Definition: We define
ℰ 𝛼, 𝛽 := 𝔼) 𝐼 𝛼, 𝛽

Then, 

ℰ 𝛼, 𝛽 = *
+*

*
,*

!"# $
%$
$
%$

-

 = 𝑒. +,, * #/0 #

Consider the probability distribution 𝜇 over (𝛼, 𝛽) induced by picking a random independent set in 𝐺. We 
have:

𝜇 𝛼, 𝛽 ∝ ℰ 𝛼, 𝛽 = 𝑒. +,, *(#/0 # )

à 𝜇 corresponds to a Gibbs measure on (𝛼, 𝛽) for the energy function 𝜙 and inverse temperature 𝑛



Independent sets in bipartite graphs [DFJ02]

[DFJ02] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”

𝐿 𝑅

Let 𝐺 = 𝐿 ∪ 𝑅, 𝐸 , 𝐿 = 𝑅 = 𝑛 be a Δ −regular bipartite graph 

Definition: We define 𝐼 𝛼, 𝛽 as the set of independent sets of 𝐺 with 𝛼𝑛 vertices in 𝐿 and 𝛽𝑛 vertices in 
𝑅.

Definition: We define
ℰ 𝛼, 𝛽 := 𝔼) 𝐼 𝛼, 𝛽

Then, 

ℰ 𝛼, 𝛽 = *
+*

*
,*

!"# $
%$
$
%$

-

 = 𝑒. +,, * #/0 #

Consider the probability distribution 𝜇 over (𝛼, 𝛽) induced by picking a random independent set in 𝐺. We 
have:

𝜇 𝛼, 𝛽 ∝ ℰ 𝛼, 𝛽 = 𝑒. +,, *(#/0 # )

[DFJ02]: 𝜇	has exponential bottleneck when Δ ≥ 6.

Elie: Put (𝒙, 𝒚)-plot?
• 𝚫 ≤ 𝟒
• 𝚫 ≥ 𝟔

Can we see this tendency quantumly?
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Quantum annealing and optimization

Each node has a label 𝑛! = {0; 1}

Space of solutions 𝑆 = 0; 1 " and 𝑆 = 2"

Associated cost function 𝐶 𝑛#, … , 𝑛" = −∑!$#" 𝑛_ + 𝑈∑ !,& ∈( 𝑛!𝑛& with 𝑈 ≫ 1

We can encode in the ground-state of an Ising Hamiltonian the solution of the MIS 

𝐻3 =K
!$#

"

L𝑛! +𝑈 K
!,& ∈(

L𝑛! 	 L𝑛&

Such that 
𝐻3 𝑛#, … , 𝑛" = 𝐶 𝑛#, … , 𝑛" |𝑛#, … , 𝑛"⟩

Goal:Find the ground state of 𝐻3



Quantum annealing and optimization

How do you actually “get” the ground state of 𝐻3à Quantum adiabatic algorithm (QAA)

Step 1: Start from an “easy-to-prepare” ground-state 𝜓 0 = + ⊗"	, the ground state of 𝐻5 = −∑!$#	" P𝜎!7

Step 2: Evolve the state under  𝐻 𝑡 = 1 − 𝑡 𝐻5 + 𝑡𝐻3, where 𝑡 ∈ [0; 1].

Step 3: If the evolution is “slow” enough, then for all times 𝑡,	 the state |𝜓 𝑡 ⟩ is close to the instantaneous ground-state.

Δ!"#

Δ!"# = min
$∈ &;(

[𝐸( 𝑡 − 𝐸& 𝑡 ]

Evolution time 𝑇 ≫ 𝑂(𝑁Δ!"#)* )



Quantum annealing and optimization

Aim: Is the QAA efficient? 

Evolution time 𝑇 ≫ 𝑂(𝑁Δ!"#
)* )

Good

Δ!"# = 𝑂
1

𝑝𝑜𝑙𝑦 𝑁

Bad

Δ!"# = 𝑂
1

exp𝑁
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Hamming weight with a spike [FGG02]

[FGG02] E.Farhi, J.Goldstone, S.Gutmann “Quantum adiabatic evolution algorithms versus simulated annealing”

Problem: Find the minimum of a cost function perturbed with a spike e.g. 𝑓 𝑥 = 𝑥 + ℎ1( 𝑥 − 𝐵 ≤ 𝜂)

Ground state: 
• Without spike 𝜓8 = |0. . 0⟩
• With spike 𝜓8 = |0. . 0	⟩

Strategy: Optimization of quantum annealing

Result: Advantage of quantum annealing versus 
simulated annealing



Hamming weight with a spike [FGG02] [Rei04]

[FGG02] E.Farhi, J.Goldstone, S.Gutmann “Quantum adiabatic evolution algorithms versus simulated annealing”
[Rei04]   B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”

Problem: Optimization of 𝑓9 𝑥, 𝑦 = 𝑥 + 𝑦 + ℎ1( 𝑥 + 𝑦 − 𝐵 ≤ 𝜂) on pairs of states 𝑥, 𝑦 ∈ 0; 1 :*

Strategy: Quantum adiabatic algorithm with Hamiltonians (and corresponding ground states)

𝐻5 = −K
!$#

:*
𝑋! 𝜓8 = + ⊗:" =

1
2:*

K
7,;

|𝑥, 𝑦⟩

𝐻3(ℎ) = K
7,; ∈ 8;# &$

𝑓9 𝑥, 𝑦 |𝑥, 𝑦⟩⟨𝑥, 𝑦| 𝜓8 = |0. . 0⟩

𝐻 𝑡, ℎ = 1 − 𝑡 𝐻5 + 𝑡𝐻3(ℎ)

Elie: Put (𝒙, 𝒚)-plot?

Linear schedule

Lemma: Δ 𝑡 ≔ 𝐸# 𝑡 − 𝐸8 𝑡 ≥ 2 − 9=
*



Hamming weight with a spike [FGG02] [Rei04]

[FGG02] E.Farhi, J.Goldstone, S.Gutmann “Quantum adiabatic evolution algorithms versus simulated annealing”
[Rei04]   B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”

Problem: Optimization of 𝑓9 𝑥, 𝑦 = 𝑥 + 𝑦 + ℎ1( 𝑥 + 𝑦 − 𝐵 ≤ 𝜂) on pairs of states 𝑥, 𝑦 ∈ 0; 1 :*

Lemma: Δ 𝑡 ≔ 𝐸# ℎ, 𝑡 − 𝐸8 ℎ, 𝑡 ≥ 2 − 9=
*

Idea of the proof: 
• Get some results on the eigenstates/eigenvalues (𝐸> ℎ, 𝑡 , |𝜓> ℎ, 𝑡 ⟩) of 𝐻 𝑡, ℎ = 1 − 𝑡 𝐻5 + 𝑡𝐻3(ℎ)
• Solve the problem for ℎ = 0 where we know the analytical solution (𝐸> 0, 𝑠 , |𝜓> 0, 𝑠 ⟩)  [Rei04]
• Variational bound

𝐸8 ℎ, 𝑡 − 𝐸8 0, 𝑡 ≤ ⟨𝜓8 0, 𝑠 𝐻 𝑡, ℎ − 𝐻 𝑡, 0 𝜓8 0, 𝑠 ⟩
• Weyl’s lemma 𝐸# ℎ, 𝑡 ≥ 𝐸#(0, 𝑡)

Then, Δ 𝑡 = 𝐸# ℎ, 𝑡 − 𝐸8 ℎ, 𝑡 ≥ 𝐸# 0, 𝑡 − 𝐸8 0, 𝑡 − ⟨𝜓8 0, 𝑠 𝐻 𝑡, ℎ − 𝐻 𝑡, 0 𝜓8 0, 𝑠 ⟩

Finally, ⟨𝜓8 0, 𝑠 𝐻 𝑡, ℎ − 𝐻 𝑡, 0 𝜓8 0, 𝑠 ⟩ corresponds to an expectation value of a binomial distribution which can be easily 
bound. 
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Quantum annealing for MIS 

Problem: Optimization of 𝑓 𝑥, 𝑦 = − 𝑥 − 𝑦 + 𝑈∑ !,& ∈( 𝑥!𝑦& on pairs of states 𝑥, 𝑦 ∈ 0; 1 :*

Strategy: Quantum adiabatic algorithm:

𝜓8 = + ⊗:"𝐻 𝑡 = − 1 − 𝑡 K
!$#

:*

𝑋! + 𝑡 −K
!$#

:*
P𝑛! +𝑈	 K

!,& ∈(	

P𝑛!	 L𝑛&

𝐿 𝑅

with initial state 

Classically:The Gibbs measure looks like 
𝜇 𝛼, 𝛽 ∝ ℰ 𝛼, 𝛽 = 𝑒. +,, *(#/0 # )

• [DFJ02] proved that 𝜙(𝛼, 𝛽) has a single local maximum for Δ ≤ 4	 and for Δ ≥ 6,𝜙	has exactly two local maxima 
symmetrical (and an exponential bottleneck) 

• Is it also the case for the probability distribution 𝑝? 𝑧 = 𝑎@ 𝑡 :of the ground state 𝜓 𝑡 = ∑@𝑎@ 𝑡 |𝑧⟩ ?

[DFJ02] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”

Elie: Put (𝒙, 𝒚)-plot of |𝝍 𝒕 ⟩?
• 𝚫 ≤ 𝟒
• 𝚫 ≥ 𝟔



Quantum annealing for MIS - 𝚫 ≤ 𝟒 

Problem: Optimization of 𝑓 𝑥, 𝑦 = − 𝑥 − 𝑦 + 𝑈∑ !,& ∈( 𝑥!𝑦& on pairs of states 𝑥, 𝑦 ∈ 0; 1 :*

Strategy: Quantum adiabatic algorithm:

𝜓8 = + ⊗:"𝐻 𝑡 = − 1 − 𝑡 K
!$#

:*

𝑋! + 𝑡 −K
!$#

:*
P𝑛! +𝑈	 K

!,& ∈(	

P𝑛!	 L𝑛&

𝐿 𝑅

with initial state 

[DFJ02] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”
[JP14] M.Jarret and S. P. Jordan, “Adiabatic optimization without local minima"

Elie: Put (𝒙, 𝒚)-plot of |𝝍 𝒕 ⟩?
• 𝚫 ≤ 𝟒
• 𝚫 ≥ 𝟔

Potential directions:
• Adiabatic algorithms without local maximum à Does it mean that our algorithm will converge with probability 1? 
• Concentration/Cheeger inequalities for stoquastic Hamiltonians

Observations:	
• The potential 𝜙(𝛼, 𝛽) has a single local maximum 



Quantum annealing for MIS - 𝚫 ≤ 𝟒 

Problem: Optimization of 𝑓 𝑥, 𝑦 = − 𝑥 − 𝑦 + 𝑈∑ !,& ∈( 𝑥!𝑦& on pairs of states 𝑥, 𝑦 ∈ 0; 1 :*

Strategy: Quantum adiabatic algorithm:

𝜓8 = + ⊗:"𝐻 𝑡 = − 1 − 𝑡 K
!$#

:*

𝑋! + 𝑡 −K
!$#

:*
P𝑛! +𝑈	 K

!,& ∈(	

P𝑛!	 L𝑛&

𝐿 𝑅

with initial state 

[DFJ02] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”
[JP14] M.Jarret and S. P. Jordan, “Adiabatic optimization without local minima"

Elie: Put (𝒙, 𝒚)-plot of |𝝍 𝒕 ⟩?
• 𝚫 ≤ 𝟒
• 𝚫 ≥ 𝟔

The potential 𝜙(𝛼, 𝛽) has a single local maximum

Potential directions:
[JP14] proved that it implies that Δ t ≔ 𝐸# 𝑡 − 𝐸8 𝑡 = Ω A "!

*&
 with 𝑊 = max

7,;
𝑓 𝑥, 𝑦 − min

7,;
𝑓 𝑥, 𝑦 = 𝑈𝑛: − 𝑛	(𝑛𝑒𝑒𝑑	𝑡𝑜	𝑐ℎ𝑒𝑐𝑘	𝑡ℎ𝑎𝑡) 
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Conclusion

• Utilization of quantum annealing for combinatorial optimization problems like the MIS preparation

• Toy example of Hamming weight with a spike problem to prove polynomial advantage of quantum annealing versus simulated annealing
method

• Current investigation of parallels between toy example and independent set preparations

• Does the cost function of MIS preparation has similarities with the one of HW with a spike?

• Can we prove some bottlenecks in the ground state probability distribution? 

• The quantum annealing Hamiltonian is stoquastic: ∀𝑥, 𝑦, 𝑥 𝐻 𝑡 𝑦 ≤ 0
• Does it mean that we can prove a polynomial speedup? 



Appendix



Quantum case 

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”

Aim: Create a 2D-plot of (in)approximability for IS-sampling 

Quantum annealing:𝐻 𝑠 = − 1 − 𝑠 (∑!$#
$
& 𝜎!7 +∑$

&/#

'$
& 𝜎!7) + 𝑠 𝑈∑ !,& ∈( 𝑛!𝑛&

Input: Let 𝐺 = (𝑉, 𝐸) be an unbalanced bipartite graph with 𝑉 = 𝐿 ∪ 𝑅 , 𝐿 = *
:

and 𝑅 = 𝑛.

We construct this graph by taking the union of Δ 𝐿 −perfect matching such that this graph has a maximum degree of Δ



Motivation

1. M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”

𝐿 𝑅
Method: We get 𝔼 ℐ 𝑥, 𝑦 = 𝑒( ),+ , -./ -

With 𝜙 𝑥, 𝑦 = −𝑥 ln 𝑥 − 𝑦 ln 𝑦 − Δ 1 − 𝑥 − 𝑦 ln 1 − 𝑥 − 𝑦 + (Δ − 1)( 1 − 𝑥 ln 1 − 𝑥 + (
)

1 −
𝑦 ln(1 − 𝑦)

Define 𝒯 = { 𝑥, 𝑦 : 𝑥, 𝑦 ≥ 0	𝑎𝑛𝑑	𝑥 + 𝑦 ≤ 1}, we have
• 𝜙 has no local minima in the interior of  𝒯 and no local maxima on the boundary of  𝒯
• All local maxima of 𝜙 satisfy 𝑥 + 𝑦 + Δ Δ − 2 𝑥𝑦 ≤ 1
• If Δ ≤ 4, 𝜙 has only a single local maximum which is on the line 𝑥 = 𝑦
• If Δ ≥ 6, 𝜙	has exactly two local maxima symmetrical in 𝑥, 𝑦 and a single
Saddle-point on 𝑥 = 𝑦. 

1
𝑥

𝑦
1

Low density statesLocal minima

Aim: Can we go through this 
barrier quantumly?



Motivation - Density 𝜙(𝑥, 𝑦)

Example for size 𝑁 = 15
𝑑 = 3



Motivation - Density 𝜙(𝑥, 𝑦)

Example for size 𝑁 = 15
𝑑 = 4



Motivation - Density 𝜙(𝑥, 𝑦)

Example for size 𝑁 = 15
𝑑 = 5



Motivation - Density 𝜙(𝑥, 𝑦)

Example for size 𝑁 = 15
𝑑 = 6



Motivation - Density 𝜙(𝑥, 𝑦)

Example for size 𝑁 = 15
𝑑 = 7



Motivation – Unbalanced bipartite graphs

1. M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”

Method:

Let 𝐺 = 𝐿 ∪𝑅, 𝐸 , 𝐿 < 𝑅 (e.g. 𝐿 = A
B
, 𝑅 = 𝑛

We define a 𝐿 (resp. 𝑅) perfect matching as a set of disjoint edges which cover all edges of 𝐿 (resp. 𝑅). By the marriage’s theorem, this can 
happen iif for every subset 𝑊 of𝐿 (resp. 𝑅): 

𝑊 ≤ |𝑁C(𝑊)|
with 𝑁C(𝑊) the set of vertex of 𝑅 that are adjacent to at least one element of𝐿 (resp. 𝑅). 
We pick a random graph by sampling Δ	𝐿-perfect matching. We consider that we generate independent sets from the sets  ℐDE 𝑥, 𝑦
corresponding to sets 𝜎 = 𝑉F ∪𝑉B	with 𝑉F = GA

B
, 𝑉B = 𝑦𝑛	and 𝑉F ⊂ 𝐿,𝑉B ⊂ 𝑅

𝔼 ℐ 𝑥, 𝑦 = | 𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔 𝑥, 𝑦 − 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 |×ℙ 𝑥, 𝑦 − 𝐼𝑆

=
𝑛
2
𝑥𝑛
2

𝑛
𝑦𝑛

FHI A
GA
B
A
GA
B

J

= 𝑒K!" G,I A FLM F 	



Unbalanced bipartite graphs 

Example of an unbalanced bipartite graphs with 𝑵 = 𝟏𝟒

One local minima!



Quantum case

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”

Aim: Create a 2D-plot of (in)approximability for IS-sampling 

Quantum annealing:𝐻 𝑠 = − 1 − 𝑠 (∑!$#* 𝜎!7 +∑*/#:* 𝜎!7) + 𝑠𝐻BC, 𝐻BC to be determined

Toy example: 𝐻 𝑠; ℎ = − 1 − 𝑠 ∑!$#:* 𝜎!7 + 𝑠	(∑7,;∈ 8,# $ & 𝑥 + 𝑦 + ℎ1 𝑥 + 𝑦 − 𝐵 ≤ 𝜂 𝑥, 𝑦 𝑥, 𝑦 	with eigenstates 𝜆> 𝑠, ℎ , |𝜓> 𝑠, ℎ ⟩

𝒉 = 𝟎: 
• 2 non-interacting Hamiltonians 𝐻 𝑠, 0 = − 1 − 𝑠 ∑#D!DE	𝜎!7 +∑*/#D!D:*𝜎!7 + 𝑠(∑7∈ 8;# $ 𝑥 𝑥 𝑥 )⊗ 𝐼𝑑 + 𝐼𝑑 ⊗ ∑;∈ 8;# $ 𝑦 𝑦 𝑦
• Ground state 𝜓8 𝑠, 0 = 𝑣# ⊗ 𝑣:
• All boils down to solve the 1-Hilbert case [1]



Quantum case 

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”

Aim: Create a 2D-plot of (in)approximability for IS-sampling 

Quantum annealing:𝐻 𝑠 = − 1 − 𝑠 (∑!$#* 𝜎!7 +∑*/#:* 𝜎!7) + 𝑠𝐻BC, 𝐻BC to be determined

Toy example: 𝐻 𝑠; ℎ = − 1 − 𝑠 ∑!$#:* 𝜎!7 + 𝑠	(∑7,;∈ 8,# $ & 𝑥 + 𝑦 + ℎ1 𝑥 + 𝑦 − 𝐵 ≤ 𝜂 𝑥, 𝑦 𝑥, 𝑦 	with eigenstates 𝜆> 𝑠, ℎ , |𝜓> 𝑠, ℎ ⟩

𝒉 = 𝟎: 
• 2 non-interacting Hamiltonians 𝐻 𝑠, 0 = − 1 − 𝑠 ∑#D!DE	𝜎!7 +∑*/#D!D:*𝜎!7 + 𝑠(∑7∈ 8;# $ 𝑥 𝑥 𝑥 )⊗ 𝐼𝑑 + 𝐼𝑑 ⊗ ∑;∈ 8;# $ 𝑦 𝑦 𝑦
• Ground state 𝜓8 𝑠, 0 = 𝑣# ⊗ 𝑣:
• All boils down to solve the 1-Hilbert case [1]



Quantum case: 1 particule case and not interacting

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”

𝐻 𝑠 = − 1 − 𝑠 ∑#D!D*𝜎!7 + 𝑠	∑7∈ 8;# $ 𝑥 𝑥 ⟨𝑥| : symmetry with Hamming weight
• Reduction from 2*-dimensional Hilbert space to a (𝑛 + 1)-one
• Basis states 𝑑 = #

$
0

∑7∶ 7 $G |𝑥⟩ , 𝑑 = 0, . . , 𝑛, in that subspace we have:

• 𝐻 𝑠 = 1 − 𝑠 ∑!$8* 𝐻8 ! + 𝑠	∑! 𝐻# ! with 𝐻8 ! =
#
:

1 −1
−1 1 and 𝐻# ! =

0 0
0 1 thus corresponding to solving 𝑛 + 1 −non interacting spins with 

eigenstates on each subspace:
• 𝐸∓ =

#
:
(1 ∓ Δ), with Δ = 1 − 2𝑠 + 2𝑠:

• 𝑎∓ = #
:- -±J

± Δ ± 𝑠 0 + 1 − 𝑠 |1⟩

• Thus, the ground state of 𝐻(𝑠) is 𝑣 = 𝑎K ⊗* = #

:- -/J
$
&
∑7∈ 8;# $ 1 − 𝑠 7 Δ + 𝑠 *K 7 |𝑥⟩ = ∑8D>D*

*
> 𝑝

1
&𝑞

$"1
& |𝑘⟩

• The eigenvalue gap Δ	 is minimized at 𝑠 = #
:, when Δ = #

:

• Therefore, for our case of ℎ = 0, 𝜓8 𝑠, 0 = #
:- -/J $∑7,;∈ 8;# $ & 1 − 𝑠 7 / ; Δ + 𝑠 :*K 7 K ; 𝑥, 𝑦 = ∑8D>!,>&D*

*
>!

*
>&

𝑝
1!21&

& 	𝑞
&$"1!"1&

& 𝑘# |𝑘:⟩

with ground state energy 1 − Δ and the energy gap is 2Δ.

𝑝 =
1 − 𝑠 :

2Δ(Δ + 𝑠)

𝑞 =
Δ + 𝑠 :

2Δ(Δ + 𝑠)



Quantum case: Interacting case
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𝐻 𝑠; ℎ = − 1 − 𝑠 ∑!$#:* 𝜎!7 + 𝑠	(∑7,;∈ 8,# $ & 𝑥 + 𝑦 + ℎ1 𝑥 + 𝑦 − 𝐵 ≤ 𝜂 𝑥, 𝑦 𝑥, 𝑦 with eigenstates 𝜆> 𝑠, ℎ , |𝜓> 𝑠, ℎ ⟩

• ℎ = 0, 𝜓8 𝑠, 0 = #
:- -/J $∑7,;∈ 8;# $ & 1 − 𝑠 7 / ; Δ + 𝑠 :*K 7 K ; 𝑥, 𝑦 = ∑8D>!,>&D*

*
>!

*
>&

𝑝
1!21&

& 	𝑞
&$"1!"1&

& 𝑘# |𝑘:⟩

with ground state energy 1 − Δ and the energy gap is 2Δ.
• By monotonicity (Weyl’s lemma) 𝜆# 𝑠, ℎ ≥ 𝜆# 𝑠, 0
• We have 𝜆8 𝑠, ℎ − 𝜆8 𝑠, 0 ≤ 𝜓8 𝑠, 0 𝐻 𝑠, ℎ − 𝐻 𝑠, 0 𝜓 𝑠, 0 = 𝑠ℎ∑8D>!,>&D*1 𝑘# + 𝑘: − 𝐵 ≤ 𝜂 *

>!
*
>&

𝑝>!/>&	𝑞:*K>!K>& = 𝔼L,M[𝑓 𝑋, 𝑌 ]
with 𝑓 𝑥, 𝑦 = 1 𝑥 + 𝑦 − 𝐵 ≤ 𝜂 ,
• We have 𝔼L,M 𝑓 𝑋, 𝑌 = ℙ[ X + Y − B ≤ 𝜂], with 𝑋, 𝑌 ∼ 𝐵𝑖𝑛(𝑛, 𝑝), which means 𝑍 ≔ 𝑋 + 𝑌 ∼ 𝐵𝑖𝑛(2𝑛, 𝑝)
We have	ℙ Z − B ≤ 𝜂 ≤ =

*
(mostly because of how similar a binomial law and a normal distribution are+ binomial law has a width of about 𝑚 when it is 

centered on strings of weight 𝑚 
• Therefore, 𝜆8 𝑠, ℎ − 𝜆8 𝑠, 0 ≤ 9J=

*
≤ 9=

*

• Then, 𝜆# 𝑠, ℎ − 𝜆8 𝑠, ℎ ≥ 𝜆# 𝑠, 0 − 𝜆8 𝑠, ℎ ≥ 𝜆# 𝑠, 0 − 𝜆8 𝑠, 0 − 𝑂 #
*
= 2Δ − 9=

*
	

• We then have: 𝑇 ≤ 𝑂 𝑝𝑜𝑙𝑦 𝑛 	

Tunneling works ✅

𝑝 =
1 − 𝑠 :

2Δ(Δ + 𝑠)

𝑞 =
Δ + 𝑠 :

2Δ(Δ + 𝑠)



Next steps

Aim: Create a 2D-plot of (in)approximability for IS-sampling 

1
𝑥

𝑦
1

Low density statesLocal minima

Could we tunnel through this low-density barrier?  

If we fix 𝒙+ 𝒚 (i.e. the size of the IS), to what extend we can sample a 
random IS?

Density of states 𝝓 𝒙, 𝒚 = ℙ 𝒙, 𝒚 − 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏	𝒊𝒔	𝑰𝑺 × | 𝒙,𝒚 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏|
|𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏|

= 𝒑 𝒙, 𝒚 𝒃 𝒙, 𝒚 ∼ 𝒆K𝑯 𝒙,𝒚 	, 

𝑯 𝒙, 𝒚 = −𝒍𝒐𝒈 𝒒 𝒙, 𝒚 = −𝒍𝒐𝒈 𝑩𝒊𝒏 𝒙, 𝒚 − 𝒍𝒐𝒈(𝒑 𝒙, 𝒚 )

perturbation

Let’s limit ourselves for now to one minimum, by making the bipartite 
graph unbalanced. 



Application – Sample IS of size 𝒌 
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Aim: Create a 2D-plot of (in)approximability for IS-sampling 

Quantum annealing:𝐻 𝑠 = − 1 − 𝑠 ∑#D!Y&D*𝑆!& +𝑠 𝑈∑ !,& ∈( 𝑛!𝑛& with 𝑆!& =
0 0 0 0
0
0
0

0
1
0

1
0
0

0
0
0

in the basis 	 00 , 01 , 10 , |11⟩}	

Input: Let 𝐺 = (𝑉, 𝐸) be an unbalanced bipartite graph with 𝑉 = 𝐿 ∪ 𝑅 , 𝐿 = *
:

and 𝑅 = 𝑛.

We construct this graph by taking the union of Δ 𝐿 −perfect matching such that this graph has a maximum degree of Δ


