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The maximum independent set problem (MIS)

Each node has a label n; = {0; 1}
Space of solutions S = {0; 1}V and |S| = 2V

The MIS problem is a NP-complete problem
Associated cost function C(zy, ...,zy) = = YN n; + U Y jeeinj With U > 1

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (WH Freeman & Co., New York, 1979)
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Independent sets in bipartite graphs [DF102]

letG = (LUR, E),|L| = |R| = nbe a A —regular bipartite graph

Definition: We define I(a, ) as the set of independent sets of G with an vertices in L and n vertices in
R.

Definition: We define

E(a, B): = Eg[lI(a, B)I]

Then,

1=\ A
E@B)=(_) (ﬂnn) <(((anﬁ)) )) — e®@pIn(1+0(1))

an

Consider the probability distribution u over (a, ) induced by picking a random independent set in G. We
have:
w(a, B) « E(a, B) = e$@Pm(1+o(1))

—> u corresponds to a Gibbs measure on (a, 8) for the energy function ¢ and inverse temperature n

[DFJO2] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”
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Independent sets in bipartite graphs [DF102]

letG = (LUR, E),|L| = |R| = nbe a A —regular bipartite graph

Definition: We define I(a, ) as the set of independent sets of G with an vertices in L and n vertices in
R.

Definition: We define

E(a, B): = Eg[lI(a, B)I]

Then,

1=\ A
E@B)=(_) (ﬂnn) <(((anﬁ)) )) — e®@pIn(1+0(1))

an

Consider the probability distribution u over (a, ) induced by picking a random independent set in G. We
have:
w(a, B) « E(a, B) = e$@Pm(1+o(1))

[DFJ02]: u has exponential bottleneck when A > 6.

Can we see this tendency quantumly? Elie: Put (x, y)-plot?
e A< 4
[DFJO2] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs” o A 2 6
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Quantum annealing and optimization

MIS

Each node has a label n; = {0; 1}
Space of solutions S = {0; 1}V and |S| = 2V
Associated cost function C(ny, ..., ny) = =Xy n_+ U X jegminy With U > 1
We can encode in the ground-state of an Ising Hamiltonian the solution of the MIS
Ho=) m+U ) i
i=1 (i,)EE

Such that
Hclnl, ...,nN> = C(nl, ...,nN)|n1, ...,nN>

Goal:Find the ground state of H,

PASQAL



Quantum annealing and optimization

How do you actually “get” the ground state of H--> Quantum adiabatic algorithm (QAA)

Step 1: Start from an “easy-to-prepare” ground-state [(0)) = |+)®V, the ground state of H,, = — YN, 67
Step 2: Evolve the state under H(t) = (1 — t)Hy + tH;, where t € [0; 1].

Step 3: If the evolution is “slow” enough, then for all times ¢, the state |y (t)) is close to the instantaneous ground-state.

A

Energy

Apin = tg[lg)g][El(t) — Eo(t)]

Evolution time T > O(NA;lzin

E(9)

Ey(?)

[
»

Time
PASQAL



Quantum annealing and optimization

Aim: Is the QAA efficient?

Good

Evolution time T > O(NA,_nzin

Bad

PASQAL
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Hamming weight with a spike [FGG02]

Problem: Find the minimum of a cost function perturbed with a spike e.g. f(x) = |x| + h1(|]x — B| < 1)

—== Without spike

—— With spike
17.5 - ﬁ ? Ground state:
«  Without spike |y,) = |0..0)
1507 «  With spike |y,) = 0..0)
12.5 1
Strategy: Optimization of quantum annealing
10.0

7.5 ‘ .
Result: Advantage of quantum annealing versus
simulated annealing
5.0 1
2.5 A
0.0 A
(') é 4'1 ('5 E'i 1'0 1'2 1'4 1'6

x|

[FGGO02] E.Farhi, J.Goldstone, S.Gutmann “Quantum adiabatic evolution algorithms versus simulated annealing”
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Hamming weight with a spike [FGG02] [Rei04]

Problem: Optimization of f,(x,y) = |x| + |y| + h1(||x| + |yl — B| < 1) on pairs of states (x,y) € {0; 1}?"

Strategy: Quantum adiabatic algorithm with Hamiltonians (and corresponding ground states)

n 1
Ho== X o) = 19 = —=" [x.3)
=1 ()
HW = ) fuluyloy)wyl Do) = [0..0)

(x,y)€{0;1}2n

Linear schedule H(t,h) = (1 —t)Hy + tH-(h)

Lemma: A(t) := E{(t) — Eo(t) > V2 — 3_;

Elie: Put (x, y)-plot?

[FGGO02] E.Farhi, J.Goldstone, S.Gutmann “Quantum adiabatic evolution algorithms versus simulated annealing”
[Rei04] B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”
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Hamming weight with a spike [FGG02] [Rei04]

Problem: Optimization of f,(x,y) = |x| + |y| + h1(||x| + |yl — B| < 1) on pairs of states (x,y) € {0; 1}?"
Lemma: A(¢) = Ey(h,t) — Eg(h,t) = V2 —

Idea of the proof:
» Get some results on the eigenstates/eigenvalues (Ej (h, t), |Yi(h,t))) of H(t,h) = (1 — t)Hy + tHc(h)

« Solve the problem for h = 0 where we know the analytical solution (E, (0, s), | (0,s))) [Rei04]
+ Variational bound

EO(hr t) - EO(OJ t) < (1,[)0(0, S)lH(t, h) - H(t, 0)'1,[)0(0, S))
*  Weyl'slemma E;(h,t) = E1(0,t)

Thenl A(t) = El(hr t) - Eo(h, t) = El(oi t) - EO(OJ t) - <lp0(0! S)lH(t' h) - H(t! O)W’O(O: S))

Finally, (1(0,s)|H(t,h) — H(t, 0)|,(0, s)) corresponds to an expectation value of a binomial distribution which can be easily
bound.

[FGGO02] E.Farhi, J.Goldstone, S.Gutmann “Quantum adiabatic evolution algorithms versus simulated annealing”
[Rei04] B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”
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Quantum annealing for MIS

Problem: Optimization of f(x,y) = —|x| — [y| + U X j)eE Xiyj ON pairs of states (x,y) € {0; 1}?"

Strategy: Quantum adiabatic algorithm:

=1

2n
2n
H(t)=—(1—t)zxi+t<—z BHU Y A ﬁ,~> with initial state [1g) = |-+)®2N
i=1 @L)EE

Classically:The Gibbs measure looks like
u(a, B) < E(a,B) = e®@pIn(1+o(1)

« [DFJ02] proved that ¢ (a, B) has a single local maximum for A < 4 and for A = 6, ¢ has exactly two local maxima
symmetrical (and an exponential bottleneck)

« Isit also the case for the probability distribution pt(z) = |a,(t)|?of the ground state [y (t)) = X, a,(t)|z) ?

Elie: Put (x, y)-plot of | (t))?
e A4

[DFJO2] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs” d A 2 6
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Quantum annealing for MIS - A < 4

Problem: Optimization of f(x,y) = —|x| — [y| + U X j)eE Xiyj ON pairs of states (x,y) € {0; 1}?"

Strategy: Quantum adiabatic algorithm:

=1

2n
2n
H(t)=—(1—t)zxi+t<—z BHU Y A ﬁ,~> with initial state [1g) = |-+)®2N
i=1 @L)EE

Observations:
« The potential ¢(a, B) has a single local maximum

Potential directions:
« Adiabatic algorithms without local maximum - Does it mean that our algorithm will converge with probability 1?
« Concentration/Cheeger inequalities for stoquastic Hamiltonians
Elie: Put (x, y)-plot of | (t))?

e A<4

[DFJO2] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs” ° A 2 6
[JP14] M.Jarret and S. P. Jordan, “Adiabatic optimization without local minima"
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Quantum annealing for MIS - A < 4

Problem: Optimization of f(x,y) = —|x| — [y| + U X j)eE Xiyj ON pairs of states (x,y) € {0; 1}?"

Strategy: Quantum adiabatic algorithm:

=1

2n
2n
H(t)=—(1—t)zxi+t<—z BHU Y A ﬁ,~> with initial state [1g) = |-+)®2N
i=1 @L)EE

The potential ¢(a, ) has a single local maximum

Potential directions:
[P14] proved that it implies that A(t) = E4(£) — Eo(t) = 0

lle_l) with |W| = max f(x,y) — min f(x,y) = Un? — n (need to check that)
n (xy) )

Elie: Put (x, y)-plot of | (t))?
e A4

[DFJO2] M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs” d A 2 6

[JP14] M.Jarret and S. P. Jordan, “Adiabatic optimization without local minima"
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Conclusion

« Utilization of quantum annealing for combinatorial optimization problems like the MIS preparation

« Toy example of Hamming weight with a spike problem to prove polynomial advantage of quantum annealing versus simulated annealing
method

« Current investigation of parallels between toy example and independent set preparations
» Does the cost function of MIS preparation has similarities with the one of HW with a spike?
« Can we prove some bottlenecks in the ground state probability distribution?

« The quantum annealing Hamiltonian is stoquastic: Vx,y, (x|H(t)|y) <0
« Does it mean that we can prove a polynomial speedup?

PASQAL
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Quantum case

Aim: Create a 2D-plot of (in)approximability for IS-sampling

Input: Let G = (V, E) be an unbalanced bipartite graph withV = LUR, |[L| = %and |R| = n.

We construct this graph by taking the union of A L —perfect matching such that this graph has a maximum degree of A

3n

Quantum annealing:H(s) = —(1 — s) (2111 o’ + erl a) + s(U (i j)eE ninj)
2

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”
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Motivation

Method: We get E|7(x,y)| = e?@)n(1+o(D)
With ¢(x,y) = —xInx — ylny — A1 —x — y) In(1 — x — y) + (A — 1)((1 — x) In(1 — x) + (1 —
y)In(1 —y) 5 R

Define T = {(x,y):x,y = 0 and x + y < 1}, we have

* ¢ has no local minima in the interior of " and no local maxima on the boundary of T
*  Alllocal maxima of ¢ satisfyx + y + A(A—2)xy < 1

* If A <4, ¢ hasonly asingle local maximum which is on the linex = y

* If A > 6,¢ has exactly two local maxima symmetrical in x,y and a single
Saddle-pointon x = y.

1 ‘>
\\
Aim: Can we go through this » 74 4

barrier quantumly? '
ow density states

1. M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”

v
=
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Motivation - Density ¢ (x, y)

Example for size N = 15

d=3

Lo Independent Sets Heatmap le—5

2.00
1.75
1.50
1.25

1.00

Density ¢(x, y)

0.75

0.50

Number of elements picked from R

Il

0.25

0.00
0.0 0.2 0.4 0.6 0.8 1.0

Number of elements picked from L
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Motivation — Unbalanced bipartite graphs

Method:
let G = (LUR, E),|L| < |R]| (e.g. |L| = g IR| =n

We define a L (resp. R) perfect matching as a set of disjoint edges which cover all edges of L (resp. R). By the marriage’s theorem, this can
happen iif for every subset W ofL (resp. R):
W[ < [Ne(W)]
with N; (W) the set of vertex of R that are adjacent to at least one element ofL (resp. R).
We pick a random graph by sampling A L-perfect matching. We consider that we generate independent sets from the sets J;5(x,y)

corresponding to sets ¢ = V; UV, with |V;| = x—zn, Vo] =ynand V; € LV, c R

E[|7(x,y)|] = |(choosing(x,y) — subsets)|xP[(x,y) — IS]

A
n ((1—y>n)
_| 2 (n) >
—\xn 7N
2\ )
2
= ePuB(xYIn(1+0(1))

1. M.Dyer, A.Frieze, M.Jerrum, “On counting independent sets in sparse graphs”
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Unbalanced bipartite graphs

Example of an unbalanced bipartite graphs with N = 14

Independent Sets Heatmap One local minimal

0.016
0.014
0.012
0.010

0.008

Density ¢(x, y)

0.006

0.004

Number of elements picked from R

0.002

0.000

T T

0.0 0.2 0.4 0.6 0.8 1.0
Number of elements picked from L
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Quantum case

Aim: Create a 2D-plot of (in)approximability for IS-sampling
Quantum annealing:H(s) = —(1 — s) (XL, 6/ + Y21, 6{) + sHs, Hs to be determined
Toy example: H(s; h) = —(1 = ) 22 0 + 5 (T yeqoymyz (121 + [yl + RL(|Ix] + Iyl = B < 1)) Ix, y)(x, y| with eigenstates A, (s, b), [ihic(s, 1))

h=0:

* 2 non-interacting Hamiltonians H(s,0) = —(1 = 5)(X1<j<n 07" + Znt1<ican 07 ) + SCreon (x| x)x ) @ Id + 1d ® (Zye{o;l}nlylly)(yl)
* Ground state [ (s,0)) = [v1) Q |vy)
* All boils down to solve the 1-Hilbert case [1]

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”
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Quantum case

Aim: Create a 2D-plot of (in)approximability for IS-sampling
Quantum annealing:H(s) = —(1 — s) (XL, 6/ + Y21, 6{) + sHs, Hs to be determined
Toy example: H(s; h) = —(1 = ) 22 0 + 5 (T yeqoymyz (121 + [yl + RL(|Ix] + Iyl = B < 1)) Ix, y)(x, y| with eigenstates A, (s, b), [ihic(s, 1))

h=0:

* 2 non-interacting Hamiltonians H(s,0) = —(1 = 5)(X1<j<n 07" + Znt1<ican 07 ) + SCreon (x| x)x ) @ Id + 1d ® (Zye{o;l}nlylly)(yl)
* Ground state [ (s,0)) = [v1) Q |vy)
* All boils down to solve the 1-Hilbert case [1]

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”
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Quantum case: 1 particule case and not interacting

(1-s)?
H(s) =—(1—=5)Y1<ij<n0’ +s Yxefo;1nlxllx) (x| : symmetry with Hamming weight p= m
* Reduction from 2"-dimensional Hilbert space to a (n + 1)-one (A + 5)?
* Basis states|d) = J%Zx:lx|=d |x),d = 0,..,n, in that subspace we have: q= 20(A + 5)
d

* H(s) = (1—s) XiLo(Ho); +s X;(Hy); with (Hp); =
eigenstates on each subspace:
* Ex=5(1FA),withA = V125 + 257

NI

(_11 _11) and (Hy); = (8 (1)) thus corresponding to solving (n + 1) —non interacting spins with

1
lag) = m(i(A +5)10) + (1 —s)[1)
k n-k
*  Thus, the ground state of H(s) is |v) = |a_)®" = ﬁzxe{ml}”(l — )l + s)n Il |x) = ZoskSn(Z)p?qu)
2A(A+s
* The eigenvalue gap A is minimized at s = %, when A = \/%

1 el ki+ky 2n-kq-k»
* Therefore, for our case of h = 0, lipo(s, 00) = ¢ B yeqoymyz (1 = )1 + )27 1, y) = Boa, yn (@)~ a2 Ikl

with ground state energy 1 — A and the energy gap is 2A.

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”

PASQAL



Quantum case: Interacting case

(1-5)?

H(s;h) = —(1 = ) X1 0 + 5 Cryeqoymy (le + 1yl +h1(|lx| + Iyl - B| < n)) |x, ¥){x, y| with eigenstates A (s, h), [ (s, h)) P=200a+s)
R _ _ 1 2n—lxl— _ n n ki+ky 2n-kq-k; (A‘I‘S)Z
h = 0,05, 00) = Gy Zavecomme (L = I + 20D 3) = Fog cn () (0)P77 @ 2 Welia) 1= 28+ )

with ground state energy 1 — A and the energy gap is 2A.
* By monotonicity (Weyl’s lemma) 4, (s, h) = 4,(s,0)

+ We have 2o(s, k) = A(s, 0) < (tho(s, 0)|H(s, h) = H(s,0)[(s, 0)) = sh Tosi, kyen LUk + ko = Bl < 1) () (1) pfa+ke q2na—he = By [£ (X, V)]

with f(x,y) =1(lx +y — B[ <),
*  Wehave Exy[f(X,Y)] = P[IX+ Y — B| < 7], with X,Y ~ Bin(n, p), whichmeans Z :== X +Y ~ Bin(2n,p)

We have P[|Z — B| < n] < \/iﬁ (mostly because of how similar a binomial law and a normal distribution are+ binomial law has a width of about /m when it is
centered on strings of weight m

h h
* Therefore, Ay(s, h) — Ay(s,0) < % < \/—;
© Then, 1(s,h) — Ao(s, k) = 24(5,0) — Ao(s,h) = 14(5,0) — Ao(5,0) — 0 (=) = 24 — =

n Vi
* Wethenhave: T < O(poly(n))

Tunneling works

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”
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Next steps

Aim: Create a 2D-plot of (in)approximability for IS-sampling

Could we tunnel through this low-density barrier?

If we fix x + y (i.e. the size of the IS), to what extend we can sample a
random IS?

Density of states ¢p(x, y) = P[(x, y) — partition is IS]x %—irfifﬁm =p(x,y)b(x,y) ~ e~

H(x,y) = —log(q(x,y)) = —log(Bin(x,y)) — log(p(x,y))

perturbation

Let’s limit ourselves for now to one minimum, by making the bipartite
graph unbalanced.

PASQAL



Application — Sample IS of size k

Aim: Create a 2D-plot of (in)approximability for IS-sampling

Input: Let G = (V, E) be an unbalanced bipartite graph withV = LUR, |[L| = %and |R| = n.

We construct this graph by taking the union of A L —perfect matching such that this graph has a maximum degree of A

0 0 0 O
Quantum annealing:H (s) = —(1 = 5) X1<icjen Sij + S(U X jyep ninyj) with S;j = 8 (1) (1) 8 in the basis { |00}, |01),]10), [11)}
0 0 0 O

1. B.W. Reichardt” The Quantum Adiabatic Optimization Algorithm and Local Minima”
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