Exploring Quantum Annealing and Tunneling: Harnessing their Potential for Independent Set Sampling

Elie Bermot, Simon Apers

1	Introduction & Motivation
2	Quantum annealing and optimization for (M) IS preparation
3	Hamming weight with a spike problem
4	Independent set preparation
5	Conclusions and perspectives

1	Introduction & Motivation
2	Quantum annealing and optimization for (M) IS preparation
3	Hamming weight with a spike problem
4	Independent set preparation
5	Conclusions and perspectives

Copyright PASQAL SAS

The maximum independent set problem (MIS)

Each node has a label $n_i = \{0; 1\}$ Space of solutions $S = \{0; 1\}^N$ and $|S| = 2^N$

The MIS problem is a NP-complete problem

Associated cost function $C(z_1, ..., z_N) = -\sum_{i=1}^N n_i + U \sum_{(i,j) \in E} n_i n_j$ with $U \gg 1$

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (WH Freeman & Co., New York, 1979)

Independent sets in bipartite graphs [DFJ02]

Let $G = (L \cup R, E), |L| = |R| = n$ be a Δ -regular bipartite graph

Definition: We define $I(\alpha, \beta)$ as the set of independent sets of *G* with αn vertices in *L* and βn vertices in *R*.

Definition: We define

 $\mathcal{E}(\alpha,\beta) := \mathbb{E}_G[|I(\alpha,\beta)|]$

Then,

$$\mathcal{E}(\alpha,\beta) = \binom{n}{\alpha n} \binom{n}{\beta n} \left(\frac{\binom{(1-\beta)n}{\alpha n}}{\binom{n}{\alpha n}} \right)^{\Delta} = e^{\phi(\alpha,\beta)n(1+o(1))}$$

Consider the probability distribution μ over (α, β) induced by picking a random independent set in *G*. We have:

$$\mu(\alpha,\beta) \propto \mathcal{E}(\alpha,\beta) = e^{\phi(\alpha,\beta)n(1+o(1))}$$

 $\rightarrow \mu$ corresponds to a Gibbs measure on (α, β) for the energy function ϕ and inverse temperature n

[DFJ02] M.Dyer, A.Frieze, M.Jerrum, "On counting independent sets in sparse graphs"

Independent sets in bipartite graphs [DFJ02]

Let $G = (L \cup R, E), |L| = |R| = n$ be a Δ –regular bipartite graph

Definition: We define $I(\alpha, \beta)$ as the set of independent sets of *G* with αn vertices in *L* and βn vertices in *R*.

Definition: We define

 $\mathcal{E}(\alpha,\beta) := \mathbb{E}_G[|I(\alpha,\beta)|]$

Then,

$$\mathcal{E}(\alpha,\beta) = \binom{n}{\alpha n} \binom{n}{\beta n} \left(\frac{\binom{(1-\beta)n}{\alpha n}}{\binom{n}{\alpha n}} \right)^{\Delta} = e^{\phi(\alpha,\beta)n(1+o(1))}$$

Consider the probability distribution μ over (α, β) induced by picking a random independent set in *G*. We have:

$$\mu(\alpha,\beta) \propto \mathcal{E}(\alpha,\beta) = e^{\phi(\alpha,\beta)n(1+o(1))}$$

[DFJ02]: μ has exponential bottleneck when $\Delta \ge 6$.

Can we see this tendency quantumly?

[DFJ02] M.Dyer, A.Frieze, M.Jerrum, "On counting independent sets in sparse graphs"

1	Introduction & Motivation
2	Quantum annealing and optimization for (M) IS preparation
3	Hamming weight with a spike problem
4	Independent set preparation
5	Conclusions and perspectives

Quantum annealing and optimization

Each node has a label $n_i = \{0; 1\}$

Space of solutions $S = \{0, 1\}^N$ and $|S| = 2^N$

Associated cost function $C(n_1, ..., n_N) = -\sum_{i=1}^N n_- + U \sum_{(i,j) \in E} n_i n_j$ with $U \gg 1$

We can encode in the ground-state of an Ising Hamiltonian the solution of the MIS

$$H_C = \sum_{i=1}^N \widehat{n_i} + U \sum_{(i,j) \in E} \widehat{n_i} \ \widehat{n_j}$$

Such that

$$H_C|n_1,\ldots,n_N\rangle = C(n_1,\ldots,n_N)|n_1,\ldots,n_N\rangle$$

<u>Goal</u>: Find the ground state of H_C

Quantum annealing and optimization

How do you actually "get" the ground state of $H_C \rightarrow$ Quantum adiabatic algorithm (QAA)

Step 1: Start from an "easy-to-prepare" ground-state $|\psi(0)\rangle = |+\rangle^{\otimes N}$, the ground state of $H_M = -\sum_{i=1}^N \hat{\sigma}_i^x$

Step 2: Evolve the state under $H(t) = (1 - t)H_M + tH_C$, where $t \in [0, 1]$.

Step 3: If the evolution is "slow" enough, then for all times t, the state $|\psi(t)\rangle$ is close to the instantaneous ground-state.

Quantum annealing and optimization

Aim: Is the QAA efficient?

1	Introduction & Motivation
2	Quantum annealing and optimization for (M) IS preparation
3	Hamming weight with a spike problem
4	Independent set preparation
5	Conclusions and perspectives

Copyright PASQAL SAS

Hamming weight with a spike [FGG02]

Problem: Find the minimum of a cost function perturbed with a spike e.g. $f(x) = |x| + h1(|x - B| \le \eta)$

Ground state:

- Without spike $|\psi_0\rangle = |0..0\rangle$
- With spike $|\psi_0\rangle = |0..0\rangle$

Strategy: Optimization of quantum annealing

<u>Result</u>: Advantage of quantum annealing versus simulated annealing

Hamming weight with a spike [FGG02] [Rei04]

Problem: Optimization of $f_h(x, y) = |x| + |y| + h1(||x| + |y| - B| \le \eta)$ on pairs of states $(x, y) \in \{0, 1\}^{2n}$

Strategy: Quantum adiabatic algorithm with Hamiltonians (and corresponding ground states)

$$H_{M} = -\sum_{i=1}^{2n} X_{i} \qquad |\psi_{0}\rangle = |+\rangle^{\otimes 2N} = \frac{1}{\sqrt{2^{2n}}} \sum_{(x,y)} |x, y\rangle$$
$$H_{C}(h) = \sum_{(x,y)\in\{0;1\}^{2n}} f_{h}(x,y) |x,y\rangle\langle x, y| \qquad |\psi_{0}\rangle = |0..0\rangle$$

 $H(t,h) = (1-t)H_M + tH_C(h)$

<u>Lemma:</u> $\Delta(t) \coloneqq E_1(t) - E_0(t) \ge \sqrt{2} - \frac{h\eta}{\sqrt{n}}$

Elie: Put (x, y)-plot?

[FGG02] E.Farhi, J.Goldstone, S.Gutmann "Quantum adiabatic evolution algorithms versus simulated annealing"[Rei04] B.W. Reichardt" The Quantum Adiabatic Optimization Algorithm and Local Minima"

Problem: Optimization of $f_h(x, y) = |x| + |y| + h1(||x| + |y| - B| \le \eta)$ on pairs of states $(x, y) \in \{0, 1\}^{2n}$

Lemma: $\Delta(t) \coloneqq E_1(h, t) - E_0(h, t) \ge \sqrt{2} - \frac{h\eta}{\sqrt{n}}$

Idea of the proof:

- Get some results on the eigenstates/eigenvalues $(E_k(h, t), |\psi_k(h, t)\rangle)$ of $H(t, h) = (1 t)H_M + tH_C(h)$
- Solve the problem for h = 0 where we know the analytical solution $(E_k(0,s), |\psi_k(0,s)\rangle)$ [Rei04]
- Variational bound

 $E_0(h,t) - E_0(0,t) \le \langle \psi_0(0,s) | H(t,h) - H(t,0) | \psi_0(0,s) \rangle$

• Weyl's lemma $E_1(h, t) \ge E_1(0, t)$

Then, $\Delta(t) = E_1(h, t) - E_0(h, t) \ge E_1(0, t) - E_0(0, t) - \langle \psi_0(0, s) | H(t, h) - H(t, 0) | \psi_0(0, s) \rangle$

Finally, $\langle \psi_0(0,s)|H(t,h) - H(t,0)|\psi_0(0,s)\rangle$ corresponds to an expectation value of a binomial distribution which can be easily bound.

[FGG02] E.Farhi, J.Goldstone, S.Gutmann "Quantum adiabatic evolution algorithms versus simulated annealing"[Rei04] B.W. Reichardt" The Quantum Adiabatic Optimization Algorithm and Local Minima"

1	Introduction & Motivation
2	Quantum annealing and optimization for (M) IS preparation
3	Hamming weight with a spike problem
4	Independent set preparation
5	Conclusions and perspectives

Copyright PASQAL SAS

Quantum annealing for MIS

Problem: Optimization of $f(x, y) = -|x| - |y| + U \sum_{(i,j) \in E} x_i y_j$ on pairs of states $(x, y) \in \{0, 1\}^{2n}$

<u>Strategy</u>: Quantum adiabatic algorithm:

2...

$$H(t) = -(1-t)\sum_{i=1}^{2n} X_i + t \left(-\sum_{i=1}^{2n} \hat{n}_i + U \sum_{(i,j)\in E} \hat{n}_i \,\hat{n}_j\right) \text{ with initial state } |\psi_0\rangle = |+\rangle^{\otimes 2N}$$

Classically: The Gibbs measure looks like

 $\mu(\alpha,\beta) \propto \mathcal{E}(\alpha,\beta) = e^{\phi(\alpha,\beta)n(1+o(1))}$

- [DFJ02] proved that $\phi(\alpha, \beta)$ has a single local maximum for $\Delta \le 4$ and for $\Delta \ge 6$, ϕ has exactly two local maxima symmetrical (and an exponential bottleneck)
- Is it also the case for the probability distribution $p^t(z) = |a_z(t)|^2$ of the ground state $|\psi(t)\rangle = \sum_z a_z(t)|z\rangle$?

Quantum annealing for MIS - $\Delta \leq 4$

Problem: Optimization of $f(x, y) = -|x| - |y| + U \sum_{(i,j) \in E} x_i y_j$ on pairs of states $(x, y) \in \{0, 1\}^{2n}$

<u>Strategy</u>: Quantum adiabatic algorithm:

2...

$$H(t) = -(1-t)\sum_{i=1}^{2n} X_i + t \left(-\sum_{i=1}^{2n} \hat{n}_i + U \sum_{(i,j)\in E} \hat{n}_i \hat{n}_j\right) \text{ with initial state } |\psi_0\rangle = |+\rangle^{\otimes 2N}$$

Observations:

• The potential $\phi(\alpha, \beta)$ has a single local maximum

Potential directions:

- Adiabatic algorithms without local maximum \rightarrow Does it mean that our algorithm will converge with probability 1?
- Concentration/Cheeger inequalities for stoquastic Hamiltonians

PASQAL

• $\Delta \ge 6$

Quantum annealing for MIS - $\Delta \leq 4$

<u>Problem</u>: Optimization of $f(x, y) = -|x| - |y| + U \sum_{(i,j) \in E} x_i y_j$ on pairs of states $(x, y) \in \{0, 1\}^{2n}$

<u>Strategy</u>: Quantum adiabatic algorithm:

$$H(t) = -(1-t)\sum_{i=1}^{2n} X_i + t \left(-\sum_{i=1}^{2n} \hat{n}_i + U \sum_{(i,j)\in E} \hat{n}_i \hat{n}_j\right) \text{ with initial state } |\psi_0\rangle = |+\rangle^{\otimes 2N}$$

R

L

The potential $\phi(\alpha, \beta)$ has a single local maximum

Potential directions:

[JP14] proved that it implies that $\Delta(t) \coloneqq E_1(t) - E_0(t) = \Omega\left(\frac{|W|^{-1}}{n^2}\right)$ with $|W| = \max_{(x,y)} f(x,y) - \min_{(x,y)} f(x,y) = Un^2 - n$ (need to check that)

	Elie: Put (x, y) -plot of $ \psi(t)\rangle$?	
	• $\Delta \leq 4$	
[DFJ02] M.Dyer, A.Frieze, M.Jerrum, "On counting independent sets in sparse graphs" [JP14] M.Jarret and S. P. Jordan, "Adiabatic optimization without local minima"	• $\Delta \ge 6$	2 ^{Na}
		PASQAL

1	Introduction & Motivation
2	Quantum annealing and optimization for (M) IS preparation
3	Hamming weight with a spike problem
4	Independent set preparation
5	Conclusions and perspectives

Copyright PASQAL SAS

Conclusion

- Utilization of quantum annealing for combinatorial optimization problems like the MIS preparation
- Toy example of Hamming weight with a spike problem to prove polynomial advantage of quantum annealing versus simulated annealing method

- Current investigation of parallels between toy example and independent set preparations
 - Does the cost function of MIS preparation has similarities with the one of HW with a spike?
 - Can we prove some bottlenecks in the ground state probability distribution?
 - The quantum annealing Hamiltonian is stoquastic: $\forall x, y, \langle x | H(t) | y \rangle \leq 0$
 - Does it mean that we can prove a polynomial speedup?

Quantum case

Input: Let G = (V, E) be an unbalanced bipartite graph with $V = L \cup R$, $|L| = \frac{n}{2}$ and |R| = n.

We construct this graph by taking the union of ΔL –perfect matching such that this graph has a maximum degree of Δ

Quantum annealing:
$$H(s) = -(1-s)\left(\sum_{i=1}^{\frac{n}{2}}\sigma_i^x + \sum_{\frac{n}{2}+1}^{\frac{3n}{2}}\sigma_i^x\right) + s\left(U\sum_{(i,j)\in E}n_in_j\right)$$

1. B.W. Reichardt" The Quantum Adiabatic Optimization Algorithm and Local Minima"

Motivation

<u>Method:</u> We get $\mathbb{E}|\mathcal{I}(x, y)| = e^{\phi(x, y)n(1+o(1))}$

With $\phi(x, y) = -x \ln x - y \ln y - \Delta(1 - x - y) \ln(1 - x - y) + (\Delta - 1)((1 - x) \ln(1 - x) + (1 - y) \ln(1 - y))$

Define $\mathcal{T} = \{(x, y) : x, y \ge 0 \text{ and } x + y \le 1\}$, we have

- ϕ has no local minima in the interior of ${\mathcal T}$ and no local maxima on the boundary of ${\mathcal T}$
- All local maxima of ϕ satisfy $x + y + \Delta(\Delta 2)xy \le 1$
- If $\Delta \leq 4$, ϕ has only a single local maximum which is on the line x = y
- If $\Delta \ge 6$, ϕ has exactly two local maxima symmetrical in x, y and a single Saddle-point on x = y.

Example for size N = 15

d = 3

Example for size N = 15

d = 4

Example for size N = 15

d = 5

Example for size N = 15

d = 6

Example for size N = 15

d = 7

Motivation – Unbalanced bipartite graphs

Method:

Let $G = (L \cup R, E), |L| < |R|$ (e.g. $|L| = \frac{n}{2}, |R| = n$

We define a L (resp. R) perfect matching as a set of disjoint edges which cover all edges of L (resp. R). By the marriage's theorem, this can happen if for every subset W of L (resp. R):

 $|W| \le |N_G(W)|$

with $N_G(W)$ the set of vertex of R that are adjacent to at least one element of L (resp. R).

We pick a random graph by sampling ΔL -perfect matching. We consider that we generate independent sets from the sets $\mathcal{I}_{UB}(x, y)$ corresponding to sets $\sigma = V_1 \cup V_2$ with $|V_1| = \frac{xn}{2}$, $|V_2| = yn$ and $V_1 \subset L, V_2 \subset R$

$$\mathbb{E}[|\mathcal{I}(x,y)|] = |(choosing(x,y) - subsets)| \times \mathbb{P}[(x,y) - IS]$$
$$= \binom{n}{\frac{2}{xn}} \binom{n}{yn} \binom{\binom{(1-y)n}{\frac{xn}{2}}}{\binom{n}{\frac{xn}{2}}}^{\Delta}$$
$$= e^{\phi_{UB}(x,y)n(1+o(1))}$$

1. M.Dyer, A.Frieze, M.Jerrum, "On counting independent sets in sparse graphs"

Unbalanced bipartite graphs

Example of an unbalanced bipartite graphs with N = 14

One local minima!

Quantum case

Aim: Create a 2D-plot of (in)approximability for IS-sampling

<u>Quantum annealing:</u> $H(s) = -(1-s)(\sum_{i=1}^{n} \sigma_i^x + \sum_{n+1}^{2n} \sigma_i^x) + sH_{IS}$, H_{IS} to be determined

<u>Toy example:</u> $H(s;h) = -(1-s)\sum_{i=1}^{2n} \sigma_i^x + s \left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x| + |y| + h1\left(\left||x| + |y| - B\right| \le \eta\right)\right)|x,y\rangle\langle x,y|$ with eigenstates $\lambda_k(s,h), |\psi_k(s,h)\rangle$

<u>*h* = 0:</u>

- 2 non-interacting Hamiltonians $H(s, 0) = -(1-s)(\sum_{1 \le i \le n} \sigma_i^x + \sum_{n+1 \le i \le 2n} \sigma_i^x) + s(\sum_{x \in \{0;1\}^n} (|x||x\rangle\langle x|) \otimes Id + Id \otimes (\sum_{y \in \{0;1\}^n} |y||y\rangle\langle y|)$
- Ground state $|\psi_0(s,0)\rangle = |v_1\rangle \otimes |v_2\rangle$
- All boils down to solve the 1-Hilbert case [1]

1. B.W. Reichardt" The Quantum Adiabatic Optimization Algorithm and Local Minima"

Quantum case

Aim: Create a 2D-plot of (in)approximability for IS-sampling

<u>Quantum annealing:</u> $H(s) = -(1-s)(\sum_{i=1}^{n} \sigma_i^x + \sum_{n+1}^{2n} \sigma_i^x) + sH_{IS}$, H_{IS} to be determined

<u>Toy example:</u> $H(s;h) = -(1-s)\sum_{i=1}^{2n} \sigma_i^x + s \left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x| + |y| + h1\left(\left||x| + |y| - B\right| \le \eta\right)\right)|x,y\rangle\langle x,y|$ with eigenstates $\lambda_k(s,h), |\psi_k(s,h)\rangle$

<u>*h* = 0:</u>

- 2 non-interacting Hamiltonians $H(s, 0) = -(1-s)(\sum_{1 \le i \le n} \sigma_i^x + \sum_{n+1 \le i \le 2n} \sigma_i^x) + s(\sum_{x \in \{0;1\}^n} (|x||x\rangle\langle x|) \otimes Id + Id \otimes (\sum_{y \in \{0;1\}^n} |y||y\rangle\langle y|)$
- Ground state $|\psi_0(s,0)\rangle = |v_1\rangle \otimes |v_2\rangle$
- All boils down to solve the 1-Hilbert case [1]

1. B.W. Reichardt" The Quantum Adiabatic Optimization Algorithm and Local Minima"

Quantum case: 1 particule case and not interacting

 $H(s) = -(1-s)\sum_{1 \le i \le n} \sigma_i^x + s \sum_{x \in \{0;1\}^n} |x| |x\rangle \langle x| : \text{symmetry with Hamming weight}$

- Reduction from 2^n -dimensional Hilbert space to a (n + 1)-one
- Basis states $|d\rangle = \frac{1}{\sqrt{\binom{n}{d}}} \sum_{x:|x|=d} |x\rangle$, d = 0, ..., n, in that subspace we have:

• $H(s) = (1-s)\sum_{i=0}^{n}(H_0)_i + s\sum_i(H_1)_i$ with $(H_0)_i = \frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ and $(H_1)_i = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ thus corresponding to solving (n+1) -non interacting spins with eigenstates on each subspace:

•
$$E_{\mp} = \frac{1}{2}(1 \mp \Delta)$$
, with $\Delta = \sqrt{1 - 2s + 2s^2}$
• $|a_{\mp}\rangle = \frac{1}{\sqrt{2\Delta(\Delta \pm s)}}(\pm (\Delta \pm s)|0\rangle + (1 - s)|1\rangle$

• Thus, the ground state of H(s) is $|v\rangle = |a_-\rangle^{\otimes n} = \frac{1}{(2\Delta(\Delta+s))^2} \sum_{x \in \{0;1\}^n} (1-s)^{|x|} (\Delta+s)^{n-|x|} |x\rangle = \sum_{0 \le k \le n} {n \choose k} p^{\frac{k}{2}} q^{\frac{n-k}{2}} |k\rangle$

• The eigenvalue gap
$$\Delta$$
 is minimized at $s = \frac{1}{2}$, when $\Delta = \frac{1}{\sqrt{2}}$

• Therefore, for our case of h = 0, $|\psi_0(s,0)\rangle = \frac{1}{(2\Delta(\Delta+s))^n} \sum_{x,y \in (\{0;1\}^n)^2} (1-s)^{|x|+|y|} (\Delta+s)^{2n-|x|-|y|} |x,y\rangle = \sum_{0 \le k_1, k_2 \le n} \binom{n}{k_1} \binom{n}{k_2} p^{\frac{k_1+k_2}{2}} q^{\frac{2n-k_1-k_2}{2}} |k_1\rangle |k_2\rangle$ with ground state energy $1 - \Delta$ and the energy gap is 2Δ .

 $p = \frac{(1-s)^2}{2\Delta(\Delta+s)}$ $q = \frac{(\Delta+s)^2}{2\Delta(\Delta+s)}$

Quantum case: Interacting case

$$H(s;h) = -(1-s)\sum_{i=1}^{2n} \sigma_i^x + s\left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x|+|y|+h1(||x|+|y|-B| \le \eta)\right)|x,y\rangle\langle x,y| \text{ with eigenstates } \lambda_k(s,h), |\psi_k(s,h)\rangle$$

$$p = \frac{(1-s)^2}{2\Delta(\Delta+s)^2} \left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x|+|y|+h1(||x|+|y|-B| \le \eta)\right)|x,y\rangle\langle x,y| \text{ with eigenstates } \lambda_k(s,h), |\psi_k(s,h)\rangle$$

$$p = \frac{(1-s)^2}{2\Delta(\Delta+s)^2} \left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x|+|y|+h1(||x|+|y|-B| \le \eta)\right)|x,y\rangle\langle x,y| \text{ with eigenstates } \lambda_k(s,h), |\psi_k(s,h)\rangle$$

$$p = \frac{(1-s)^2}{2\Delta(\Delta+s)^2} \left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x|+|y|+h1(||x|+|y|-B| \le \eta)\right)|x,y\rangle\langle x,y| \text{ with eigenstates } \lambda_k(s,h), |\psi_k(s,h)\rangle$$

$$p = \frac{(1-s)^2}{2\Delta(\Delta+s)^2} \left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x|+|y|+h1(||x|+|y|-B| \le \eta)\right)|x,y\rangle\langle x,y| \text{ with eigenstates } \lambda_k(s,h), |\psi_k(s,h)\rangle$$

$$p = \frac{(1-s)^2}{2\Delta(\Delta+s)^2} \left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x|+|y|+h1(||x|+|y|-B| \le \eta)\right)|x,y\rangle\langle x,y| \text{ with eigenstates } \lambda_k(s,h), |\psi_k(s,h)\rangle$$

$$p = \frac{(1-s)^2}{2\Delta(\Delta+s)^2} \left(\sum_{x,y \in (\{0,1\}^n)^2} \left(|x|+|y|+h1(||x|+|y|-B| \le \eta)\right)|x,y\rangle\langle x,y| \text{ with eigenstates } \lambda_k(s,h), |\psi_k(s,h)\rangle$$

•
$$n = 0$$
, $|\psi_0(s, 0)\rangle = \frac{1}{(2\Delta(\Delta+s))^n} \sum_{x,y \in (\{0;1\}^n)^2} (1-s)^{|x|+|y|} (\Delta+s)^{2N-|x|+|y|} |x,y\rangle = \sum_{0 \le k_1, k_2 \le n} {k_1 \choose k_2} p^{-2} q^{-2} |k_1\rangle |k_2\rangle$ $q = \frac{1}{2\Delta(\Delta+s)}$
with ground state energy $1 - \Delta$ and the energy gap is 2Δ .

- By monotonicity (Weyl's lemma) $\lambda_1(s,h) \ge \lambda_1(s,0)$
- We have $\lambda_0(s,h) \lambda_0(s,0) \le \langle \psi_0(s,0) | H(s,h) H(s,0) | \psi(s,0) \rangle = sh \sum_{0 \le k_1, k_2 \le n} 1(|k_1 + k_2 B| \le \eta) {n \choose k_1} {n \choose k_2} p^{k_1 + k_2} q^{2n k_1 k_2} = \mathbb{E}_{X,Y}[f(X,Y)]$ with $f(x,y) = 1(|x + y B| \le \eta)$,
- We have $\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{P}[|X + Y B| \le \eta]$, with $X, Y \sim Bin(n,p)$, which means $Z \coloneqq X + Y \sim Bin(2n,p)$

We have $\mathbb{P}[|Z - B| \le \eta] \le \frac{\eta}{\sqrt{n}}$ (mostly because of how similar a binomial law and a normal distribution are+ binomial law has a width of about \sqrt{m} when it is centered on strings of weight m

- Therefore, $\lambda_0(s,h) \lambda_0(s,0) \le \frac{hs\eta}{\sqrt{n}} \le \frac{h\eta}{\sqrt{n}}$
- Then, $\lambda_1(s,h) \lambda_0(s,h) \ge \lambda_1(s,0) \lambda_0(s,h) \ge \lambda_1(s,0) \lambda_0(s,0) O\left(\frac{1}{\sqrt{n}}\right) = 2\Delta \frac{h\eta}{\sqrt{n}}$
- We then have: $T \leq O(poly(n))$

Tunneling works 🔽

1. B.W. Reichardt" The Quantum Adiabatic Optimization Algorithm and Local Minima"

Next steps

Aim: Create a 2D-plot of (in)approximability for IS-sampling

PASQAL

Let's limit ourselves for now to one minimum, by making the bipartite graph unbalanced.

Application – Sample IS of size *k*

Aim: Create a 2D-plot of (in)approximability for IS-sampling

<u>Input</u>: Let G = (V, E) be an unbalanced bipartite graph with $V = L \cup R$, $|L| = \frac{n}{2}$ and |R| = n.

We construct this graph by taking the union of ΔL –perfect matching such that this graph has a maximum degree of Δ

Quantum annealing:
$$H(s) = -(1-s)\sum_{1 \le i < j \le n} S_{ij} + s(U\sum_{(i,j) \in E} n_i n_j)$$
 with $S_{ij} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ in the basis { $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ }

1. B.W. Reichardt" The Quantum Adiabatic Optimization Algorithm and Local Minima"

