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Abstract

The standard model (SM) of particle physics is an accomplishment of decades of
theoretical and experimental work. It describes almost all known elementary particles
and their interactions: strong, weak and electromagnetic. However, some of the observed
events occurring in a particle accelerator, e.g., the Large Hadron Collider, correspond to
anomalous and unpredictable events, whereby the underlying physics is not governed by
the SM [1]. The detection of anomalous events and, the corresponding potential discovery
of new fundamental physics, is far from trivial. In fact – until recently – most of the
high energy physics data analysis relied on model-specific selection process. In this work,
we consider a quantum generative adversarial network (qGAN) based scoring function
that identifies anomalous events by determining whether an event is characteristic for
a certain background distribution such as the SM. We implement the qGAN training
and the anomaly detection scheme with Qiskit and test the method on proof-of-principle
examples using numerical simulations as well as actual IBM quantum processors.
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1. Introduction

The development of quantum computers stimulated quantum application research.
One of these application areas corresponds to Quantum Machine Learning (QML), i.e.,
the intersection of quantum computing and machine learning. QML can, for example,
be used to address some of the computational challenges faced in particle physics data
processing and analysis for High Energy Physics (HEP) [2].

Particle physics aims to understand the most elementary components of matter and
forces. These elementary particles can be detected in controlled environments with par-
ticle accelerators such as the Large Hadron Collider (LHC). The Standard Model (SM)
of particle physics is the most elaborate description of the basic building blocks of the
universe. It unifies three of the four fundamental forces that govern the universe: elec-
tromagnetism, the strong force, and the weak force. While it is an extremely successful
effective theory, it is known to have certain limitations, such as its incompatibility with
the gravitational force. In fact, there exist so-called anomalous events which cannot
be described by the SM. The main goal of the current data analysis at LHC is to de-
tect Beyond-Standard-Model (BSM) particles using machine learning techniques. More
specifically, anomaly detection in HEP consists of looking for rare collisions that could
generate different particles w.r.t the ones prescripted by the SM.

Effectively, the goal of anomaly detection is the classification of anomalous event data
compared to SM event data. Intuitively, one would expect that supervised machine
learning methods could offer a suitable method to approach this problem. However,
supervised learning strongly relies on the availability of sufficient data from all data
types that are to be characterized. Since it is not a priori known which data events are
anomalous, the required training data cannot be easily provided. Therefore, the training
of a supervised machine learning model for distinguishing between anomalous and SM
data is difficult and, in fact, not practical. Another potential approach for anomaly
detection would be to use clustering. These algorithms often require a certain level of
prior knowledge such as the number of clusters given in a training data set. Therefore,
recent research [3, 4] focused on using generative models to learn the underlying struc-
ture of the complex data. A generative model learns the underlying unknown process
which created a given data set. Once learnt, this approximate process could sample
more data points from a distribution close to the data distribution. This could help
to detect more easily anomalies. One particularly promising approach suggested in [4]
introduces an anomaly detection method, called AnoGAN, with generative adversarial
networks (GAN). The model employs an adversarial training of two classical neural net-
works: a generator and a discriminator. The discriminator is trained to differentiate
between the output of the generator and the real data set, and the generator is trained
to generate data which the discriminator classifies as real data. Once the generator and
the discriminator are trained, both networks can be used to define an anomaly score for
new test events. Replacing one or both of the neural networks in the GAN setting with
parameterized quantum circuits leads to a quantum Generative Adversarial Networks
(GAN), the Quantum Generative Adversarial Networks (qGAN) [5, 6] model. This ap-
proach can be interesting because a quantum generator has the advantage of providing
a native model for the physical generation processes which are governed by quantum

1
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Figure 1.1.: Workflow of the presented anomaly scoring method. We first reduced the
data sets through feature reduction techniques which are applied to testing data sets.
Then we train our qGAN on the embedded SM data points. Lastly, we compute the
anomaly score on the embedded test data set. We use the value of the anomaly score
on the SM to define a threshold. This threshold is used to classify a data point as an
anomaly.

physics. Hence, we expect that modelling the respective particle physics data with a
system that is close to the underlying physics can lead to a beneficial learning behavior.

This work outlines and investigates a qGAN based anomaly score, where a qGAN
is trained on an embedded SM data set. Then, the anomaly score for data samples is
evaluated by calculating a distance measure between the data samples and states that
are given by the trained qGAN. An overview of the method is given in Fig. 1.1. Fur-
thermore, we investigate the practical performance of anomaly detection for Beyond the
Standard Model (BSM) data with quantum simulation as well as actual quantum hard-
ware experiments.

This thesis is structured in the following way: we first give an introduction to high
energy physics (HEP) (Chapter. 2) and generative models (Chapter. 3). In the latter, we
give an overview of classical GAN (Sec. 1 of Chapter. 3) before presenting the quantum
framework of GAN (Sec. 2 of Chapter. 3). This is followed by our approach for anomaly
detection using GANs (Chapter. 4). First, we introduce the classical approach of the
AnoGAN technique (Sec. 1.1 of Chapter. 4) and present our approach in the quantum
framework (Sec. 1.2 of Chapter. 4). In the quantum approach, the data points of the
HEP data sets need to be embedded as presented in Sec. 2.2 of Chapter. 3. This is applied
to the data sets presented in Sec. 1 of Chapter 5. These data sets are compressed using
a feature selection technique (Sec. 2 of Chapter. 5) and embedded into quantum sets
( Sec. 3 of Chapter. 5). We present our result on the HEP data set in the classical
framework (Sec. 2 of Chapter. 6) and in the quantum approach (Sec. 3 of Chapter. 6)
on noiseless simulations, noisy simulator and in the hardware.

2



2. High Energy Physics

1. Standard Model of Particle Physics

Particle physics aims at uncovering what the universe is made of. It aims to understand
the elementary components of matter and radiation and how they interact with each
other [7]. It is also referred to as HEP because many elementary particles do not occur
under normal circumstances in nature but can be created and detected during energetic
collisions of other particles. These collisions can be produced in controlled environments
with particle accelerators such as the LHC in the European Organization for Nuclear
Research (CERN) [8] or in uncontrolled environments such as cataclysmic events in the
cosmic rays.

First introduced in the early 1970s, the SM of particle physics is the most elaborate
description of the basic building blocks of the universe. This model helped determining
with high precision known fundamental particles based on their properties and intro-
duces rules that determine which interactions can occur at what rate. The Standard
model has been verified experimentally with high precision [9].

The particles in the SM are fermions and bosons whose most fundamental difference
is their spin. Bosons are particles with integer spins while half-integer spin particles are
fermions. In particular, for particles described by the SM, boson particles only have a
spin 0 or 1 while fermions particles have a spin 1

2 .
The SM is a relativistic quantum field theory at the intersection of quantum physics

and special relativity. Like in Quantum Electrodynamics (QED), it uses a gauge theory
where each interaction between particules is described by the exchange of a boson called
a gauge boson. Furthermore, each boson is responsible for mediating a specific force.
More specifically, the photons γ mediate the electromagnetic interactions, the W± and
Z0-bosons the weak interactions, while the gluons mediating the strong interactions.
Plus, a boson can interact with itself if it carries the charges corresponding to the force
it mediates (e.g. gluons, W±, Z0 bosons).

The Higgs boson is the last discovered element of the SM with the characteristic of
having a spin value of 0. The scalar field associated with the Higgs boson explains the
masses of other fundamental particles. Therefore, the interaction with the Higgs boson
H generates the mass of all particles through the Higgs mechanism [7, 10].

Matter can be described by fermions and by their matching antiparticle with opposite
charges. They can be split into two categories: quarks and leptons. Each quark and
lepton is then from one of three generations:

• A quark can be either: up u or down d (first generation); charm c and strange s
(second generation); top t and bottom b (third generation).

• A lepton can be: electron e and electron neutrino νe (first generation) ; muon
µ and muon neutrino νµ (second generation) ; tau τ and tau neutrino ντ (third
generation).

3
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Figure 2.1.: The particle spectrum of the Standard Model.

Particles in different generations have similar properties but usually differ in mass, for
example, the u quark is much lighter than the t quark and the mass of the c quark is
much greater than the u quark. The main difference between quarks and leptons is that
quarks interact with the strong nuclear force, whereas leptons do not. Both quarks and
charged leptons can interact via the electromagnetic and weak forces.

2. Beyond the Standard Model

Since its formulation in the 1970s, the SM has predicted the outcome of countless
experiments in particle physics with very high accuracy. However, the model still remains
incomplete. In fact, gravity and dark matter are the main missing pieces, i.e., they
are not described by the SM. Hence, this model leaves many fundamental questions
unanswered and even raises some new ones. Some fundamental questions of the universe
that cannot be explained by the SM are given below [7, 11, 12]:

• Why has dark matter never been experimentally detected?

• How can we explain the matter/anti-matter asymmetry?

• How can we explain that neutrinos have mass and oscillate from one type to an-
other?

• How can we explain that the SM is incompatible with general relativity?

All of these questions can be answered by the study of theories beyond the SM. These
theories are usually called BSM and aim at modifying or extending our picture of the
SM.

4



3. Challenges for future experiments at the LHC

3. Challenges for future experiments at the LHC
3.1. The LHC

The LHC is the largest and most powerful particle accelerator. First started up on 10
September 2008, the LHC is a 27-kilometer long ring that consists of superconducting
magnets with a number of accelerating structures to boost the energy of the particles
along the way. It accelerates protons to nearly the velocity of light — in clockwise and
anti-clockwise directions — and then collides them at four locations of the ring, corre-
sponding to four different experiments: ALICE [13], ATLAS [14], CMS [15] and LHCb
[16].

At first, the LHC project was conceived to explain the mass property of both bosons Z
and W and the massless property of the photons. The ATLAS and the Compact Muon
Solenoid (CMS) experiments at the LHC are general-purpose detectors located at one
of these four collision points (e.g. CMS experiment in Fig. 2.2). Both experiments were
designed to search for the Higgs bosons and physics beyond the SM. New physics are
expected at the Tera electron-volt (TeV) energy scaled allowed by the LHC. Therefore,
these experiments have to be characterized by a high center of mass energy of up to 13
TeV and a luminosity of around 1.2× 1034cm−2s−1. This luminosity corresponds to the
collision number per area and per second. In practice, the integrated luminosity over
time is related to the recorded number of collision events.

In order to build up a picture of events occurring in the LHC, the CMS must find the
energies of emerging particles. Electrons and photons are particularly interesting because
of their use in finding the Higgs boson (through decay channels involving di-photons
for example) and other new physics. Most of the particles produced in the process
of the collision of two protons are usually unstable. After several decays, electrons and
photons are typical end products of successive particle decays and can easily be detected.
These particles are identified using the electromagnetic calorimeter (ECAL). In order
to find them with the necessary precision in the very strict conditions of the LHC - a
high magnetic field, high levels of radiation and only 50 nanoseconds at most between
collisions - it required very particular detector materials. Each element of the detector
can help determining one property of the particle, as seen in Fig. 2.2:

• Charged particles are detected in the tracking system.

• Photons or electrons are detected by the ECAL and their light determines the
deposited energy.

• Hadrons are detected by the hadronic calorimeter (HCAL) where jets are confined.

• Only the highest-energy hadrons and muon can cross the superconducting solenoid.

• Muons are detected in any muon detector.

• Neutrinos are elusive and can only be detected by computing the imbalance of
energy in the the reconstructed event called missing transverse energy (MET).

This entire process is called particle-flow (PF) reconstruction and aims at identify-
ing different parameters of the underlying physical process: momentum of the emitted
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particle, pseudorapidity of the emitted particle, number of emitted neutrons, etc. Here,
the pseudorapidity η is a space coordinate used to describe the particle’s direction with
respect to the beam axis. In this thesis, we use data sets from the measurements of the
CMS detector.

Figure 2.2.: Slice view of the CMS detector [17] and of the paths of different collision
products. Charged particles have a curved path due to the electromagnetic field.

3.2. The future run of the LHC

The work from more than 30 institutions has led the first run of the LHC to be successful
in the discovery of the Higgs boson confirmed by ATLAS and CMS in 2012. Run 1 (2009-
2013) performance for ECAL in particular was the following [18] :

• Electrons and photons were typically well reconstructed up to η < 2.5.

• Jets were well reconstructed up to η < 3.0

Thus, the goal for the following runs (called Run 2 and 3 of the LHC ) is to maintain
(or improve) the ECAL performance that allowed the Higgs boson discovery. However,
operating conditions have evolved and are expected to continue evolving with time.

One of the main missions of the LHC is to search for new exciting physics beyond the
Standard Model which requires the study of rare events. To witness enough rare events
the number of overall events will have to be increased. Therefore, in the future decade,
the LHC will be upgraded to the High Luminosity Large Hadron Collider (HL-LHC) to
answer its different challenges. This will call for:

• An increased luminosity (e.g. 2 × 1034cm−2s−1 for Run 2 in 2015-2018). This
will also cause an increase in the integrated luminosity: 500 fb−1 by the end of
2024. An even bigger increase for the HL-LHC with an instantaneous luminosity
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of 7.5× 1034cm−2s−1 and an integrated luminosity of 4500fb−1 is expected by the
end of HL-LHC.

• A higher beam intensity with proton-proton collisions with an energy of 13 TeV in
the center of mass.

• Bunches of particles every 25 ns from Run2 onwards (2015-) which means up to 60
simultaneous interactions per bunch crossing. This will lead to more pileup to be
dealt with for Run 2 (2015- 2018) and Run 3 (2021-2024), and even more for the
High Luminosity LHC (starting in 2027) with up to 200 concurrent interactions
per LHC bunch crossing.

Therefore, despite being able to accelerate protons to a high energy of 6 TeV for each
proton beam, it operates at the highest collision frequency, producing one proton-beam
crossing every 25 nsec. It means that for event, all LHC detectors generates around
O(1) MB of data. Naturally every event could not be efficiently stored because it would
require being able to store at a speed of O(10) TB/sec. The ambition HL-LHC program
would require enormous computing resources.

Currently, several techniques are currently used at the LHC to reduce the computation
cost of data analysis. It mostly consists of a trigger system [19]: in order to detect a
certain type of new physics phenomena, one should specify a signal hypothesis and test
of the presence of the predicted kind of events on top of a background from known
physics process. Even though this method helps reducing drastically the number of
events, it does not help to discover new physics since a hypothesis has to be made prior
of the experiment. Therefore, new methods are currently being investigated to improve
the particle track reconstruction algorithm, using deep learning [20, 21] or quantum
computing techniques [2, 22–24] for example.
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1. Classical GAN
1.1. Definition

In the last decade, the field of machine learning has rapidly evolved due to intense
research efforts and has found a wide variety of applications in the industry. Classical
machine learning has shown remarkable results at tackling tasks like classification, clus-
tering or regression due to its capacity to scale up efficiently with increasing data set
sizes [25]. In particular, the development and study of GAN, which spread out in recent
years, has helped to solve many problems of interest, e.g. GAN stem from the field of
image generation. It is possible to generate an image from a sentence or phrase that
describes its content (“a blue flower”), to generate abstract maps from satellite photos,
to predict the next frame in a video and so on. We can also mention their applications in
other fields like chemistry [26] or biology [27] where they are used to generate synthetic
data.

Another application of generative modelling is data augmentation. In a machine learn-
ing procedure, we are given large data sets collected by experiments. The process of the
experiments is not always accessible: the input-output of each experiment is the sole
knowledge of the data set. However, increasing the data set size is sometimes needed. A
tool for approximating the underlying process is given by generative learning, in partic-
ular with classical GANs: their goal is to learn the underlying probability distribution
of the data set pdata. After a generative model is trained, it can be used to sample,
i.e., generate new synthetic data that is aligned with the process responsible for the
training data. This is applicable with the GAN structure such as with BigGAN [28],
StyleGAN [29, 30], or other examples in the literature [25–27].

The GAN working principle [31, 32] consists of two parts, or two players, represented
by two differentiable neural networks, the generator (GθG) and the discriminator (DθD),
competing with each other as seen in Fig. 3.1. Here, θG and θD represent the parameters
of the generator and discriminator neural networks in this adversarial setting. The
generator GθD takes as input a sample z drawn from fixed prior distribution pz(z) and
aims at generating samples that could be mistaken for being drawn from pdata. On the
other hand, the discriminator DθD aims at distinguishing data coming from the generator
GθG and from the training data set. In practice, DθD(x) represents the probability that
x came from the data rather than from the generator.

1.2. Training with classical GAN
Training should improve the performance of both DθD and GθG at their respective

tasks simultaneously. Different methods exists to train a GAN [33, 34]. Let us first
introduce the training method presented in the original work of GAN [31].

The discriminator DθD is trained in order to maximize the probability of assigning the
correct label to both training data points and samples from GθG . The generator GθG is
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z GθG GθG(z)

x

DθD

Random

Noise

Generator

Network

Generated

Fake data

Real data

Network

Discriminator

Real or Fake data?

Figure 3.1.: Working principle of the GAN: a generator GθG samples a data sample,
and the discriminator DθD receives a data sample at a time from either the real data set
or from the generated samples and independently classify it. The aim of the training
of the GAN is done simultaneously: the generator tries to fool as much as possible the
discriminator that its data is the real one while the discriminator tries to distinguish as
much as possible the real data from the generated data

trained at the same time in order to minimize the difference between real and fake labels
log(1−DθD(GθG(z))), i.e. so that for the discriminator, a generated sample looks like a
training data point. In other words, it all comes down to solve a min-max optimization
problem with the value function V (GθG ,DθD):

min
GθG

max
DθD

V (DθD ,GθG) = Ex∼pdata(x)[log(DθD(x))] + Ez∼pz(z)[log(1−DθD(GθG(z))]. (3.1)

However, this global min-max optimization is typically not the one being optimized
during the training of the GAN. This problem can be reduced to the optimization of two
non-saturating loss functions [35] for the generator and for the discriminator respectively.

The discriminator’s loss functions reads:

CD(θG, θD) = −1
2Ez∼pz(z) log(1−DθD(GθG(z)))− 1

2Ex∼pdata logDθD(x). (3.2)

During the training, we do not present training data to the network one item at the
time, but the full training data is divided into so-called batches, a group of training data
that is fed into the network together. The larger the batch is, the better the training is.
However, it brings a higher computational cost. The random partitioning of the training
data into batches is kept for a certain number of iterations, before a new partitioning is

10



1. Classical GAN

chosen.

When sampling a batch of m noisy samples {z(1), . . . , z(m)} drawn from the noise prior
pz(z) and of m training data points {x(1), . . . , x(m)} drawn from the data distribution
pdata, it yields :

CD(θG, θD) = − 1
2m

m∑
j=1

log(1−DθD(GθG(z(j))))− 1
2m

m∑
j=1

logDθD(x(j)). (3.3)

This corresponds to a minimization of the cross-entropy cost when training a binary
classifier with a sigmoid output. During this optimization, only the parameters θD are
optimized while the parameters θG are fixed.

Several techniques exist to specify the cost function of the generator. In the original
paper of GAN [31], the generator cost function simply reads:

CG(θG, θD) = −CD(θG, θD). (3.4)

This corresponds to a zero-sum game, or a Nash equilibrium, in which the sum of all
player’s loss function is zero. Learning in this game would ideally converges to the
theoretical minimum of the loss function. However, in practice, this does not converge
as easily as in the theoretical framework. Therefore, we use for the heuristically generator
loss function:

CG(θG, θD) = −1
2Ez∼pz(z) logDθD(GθG(z)). (3.5)

When sampling a batch of m noisy samples {z(1), . . . , z(m)} drawn from the noise prior
pz(z) it yields:

CG(θG, θD) = − 1
2m

m∑
j=1

logDθD(GθG(z(j))). (3.6)

The training of both networks is usually done in an alternating fashion as seen in
Algorithm 11. Several optimizers are commonly used for the optimization, like Stochastic
Gradient Descent (SGD) [36], ADAM [37] or AMSGRAD [38].

1.3. Training with WGAN

Despite being widely used in the machine learning community, the main problem
with classical GANs is that they are hard to train because they require large training
sets and are highly susceptible to hyperparameters [39, 40]. It is currently an active
topic of research to compensate for this with structural modifications and novel loss
function formulations. One quite successful loss function is introduced in [34]. Part of
the motivations behind this loss is that the original loss functions from [31] have large
variance of gradients which make the model unstable.

To solve this issue, the Wasserstein Generative Adversarial Networks (WGAN) were
introduced using the optimisation of the Wasserstein distance which has a smoother
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input : Dataset D = {x1, . . . , xM}, Prior distribution pz(z), the number of
discriminator iterations per generator iteration k, generator optimizer
OptθG and its parameters, discriminator optimizer OptθD and its
parameters, batch size m.

1 for number of training steps do
2 for k steps do
3 Sample a batch of m noisy samples {z(1), . . . , z(m)} drawn from the noise

prior pz(z) ;
4 Sample a batch of m training data points {x(1), . . . , x(m)} drawn from

the data distribution pdata ;
5 Update the discriminator parameters by optimizing CD(θG, θD) w.r.t.

θD with the optimizer OptθD ;
6 θD ← θD −OptθD(CD(θG, θD))
7 end
8 Sample a batch of m noisy samples {z(1), . . . , z(m)} drawn from the noise

prior pz(z) ;
9 Update the generator parameters by optimizing CG(θG, θD) w.r.t. θG with

the optimizer OptθG ;
10 θG ← θG −OptθG(CG(θG, θD))
11 end

Algorithm 1: GAN training algorithm.

gradient behavior [34].

The Wasserstein distance between the data distribution pdata and the generator dis-
tribution pg reads:

W (pdata, pg) = sup
f :‖f‖L≤1

[Ex∼pdata [f(x)]− Ex∼pg [f(x)]] (3.7)

Here the supremum is taken over all 1-Lipschitz functions. This distance can be ap-
proximated using a neural network represented by the discriminator DθD parametrized
by the parameters θD. The generator distribution corresponds to the distribution of all
GθG(z) for z drawn from the prior distribution pz(z). Therefore, the discriminator needs
to optimize the Wasserstein distance that can be rewritten as:

sup
θD

[Ex∼pdata [DθD(x)]− Ez∼pz [DθD(GθG(z))]] (3.8)

Here DθD corresponds to a parametrized family of 1-Lipschitz functions. We can choose
a family of parametrized neural networks with a sigmoid activation function in the last
layer for example. The discriminator loss function reads:

CD(θG, θD) = Ex∼pdata [DθD(x)]− Ez∼pz [DθD(GθG(z))] (3.9)
Similarly the generator aims at minimizing:

min
θG

[Ex∼pdata [DθD(x)]− Ez∼pz [DθD(GθG(z))]] = −min
θG

Ez∼pz [DθD(GθG(z))] (3.10)
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Therefore, the generator loss functions reads:

CG(θG, θD) = −Ez∼pz [DθD(GθG(z))]. (3.11)

However, the constraint of having a family of 1-Lipschitz functions is hard to maintain
throughout the training. Furthermore, as stated in [41], a differentiable function f is
1-Lipschitz if and only if it has gradients with norm at most 1 everywhere. Therefore,
to ensure this, a gradient penalty term is added to the discriminator loss function which
then reads

CD(θG, θD) = Ex∼pdata [DθD(x)]− Ez∼pz [DθD(GθG(z))]
+ λEx̂∼px̂ [(‖∇x̂DθD(x̂)‖ − 1)2] (3.12)

Here λ represents the strength of the gradient penalty and px̂(x̂) is the probability
distribution of x̂ = x+ t(GθG(z)− x) where x ∼ pdata, z ∼ pz and t ∼ U(0, 1).

2. Quantum GAN
2.1. Related work

The data generation process can be interpreted as a black box. Learning the struc-
ture of the data with a generative model then relates to approximating the process in
the generation black box. In HEP, the measurement of the pp collision at the LHC
corresponds to a measurement of a process governed by quantum physics. For example,
if a pp collision ends up in a certain detector response, the generative model is able to
recreate the event accountable for the detected particles. Since the underlying process
is quantum, we expect (or can assume) that modelling the process can be done with a
quantum ansatz generative learning.

Quantum computing corresponds to a computational model that is based on the rules
of quantum mechanics. For further information, we recommend reading [42]. As this
field develops, the search for potential applications of these big conceptual and technical
advances continues. In the hope of solving tasks that are hard on classical devices [43, 44],
small noisy devices, called Noisy Intermediate-Scale Quantum (NISQ) are already avail-
able to test state-of-the-art quantum algorithms. In particular, many machine learning
algorithms have been adapted to quantum devices [45–47]—Quantum Machine Learning
(QML). More generally, QML may refer to different methods such as using machine
learning (ML) techniques to solve quantum problems or to design classical ML tech-
niques influenced by quantum structures. Even if the current NISQ are still limited in
the number of qubits [48], they still could bring a potential advantage when combined
with QML [49].

In the QML framework, the GAN is a classical ML algorithm that can be adapted
in the quantum framework [5, 50]. Several approaches are possible: the input data, the
generator and the discriminator can be chosen to be either classical or quantum and
combined into an algorithm. It is still ongoing research to find the optimal configuration
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between classical and quantum for a given data set. For instance there exists discrete
probability distributions that have been proved to be impossible to learn efficiently with
a classical generator, but that can be learned efficiently by a quantum one [51]. This
creates a theoretical gap in favour of qGAN.

Fully quantum GAN, made with a quantum generator and a quantum discriminator,
is an advantageous structure: the quantum generator can be used to learn an underlying
quantum process, and a quantum discriminator only needs to measure a single qubit.
This discriminator approach helps reducing measurement errors and avoids using global
objective functions which could lead in the vanishing gradient problem, so called, barren
plateaus [52, 53]. Recent research are also looking at improving the training of qGAN by
putting more weight on data points which contribute more to the data distribution [54].

In recent literature we can find numerous examples of attempts to tackle real life
problems with qGAN. In [6] a qGAN algorithm, using a quantum generator and a clas-
sical discriminator to generate classical distributions and implemented it with numerical
simulations as well as on a IBM quantum hardware with 3 qubits. Another work used
a qGAN algorithm to learn a continuous distribution for data that aims to simulate
HEP detectors, using both hybrid and fully quantum setups [55]. In HEP, qGANs
can be combined with a Quantum Amplitude Estimation algorithm [56] for integrating
elementary-particle cross sections, using both Monte-Carlo methods and an estimation
of the underlying probability distribution of a HEP data set [57]. For image process-
ing, we can cite 2 relevant experiments that aimed at generating the famous MNIST
handwritten digit dataset: one which used a hybrid qGAN with 3 to 5 qubits on a su-
perconducting processor, but but showed that qGAN are resilient to a certain level of
noise sources contained in a quantum devices [58], and another which used an 8 qubit
ion trap processor and obtained high-resolution digits, still using a hybrid setup [59].
However, despite all of the different progress on qGAN, a lot of research is still needed
to understand where and why it could outperform classical models.

2.2. Data embedding

In this thesis, we study measurement data of quantum experiments–which is given in
a classical form. If we now want to study this data with a quantum framework, one has to
design an efficient way to represent the respective classical features with a quantum state.
Quantum machine learning algorithms can not ignore how the embedding of a classical
memory into the quantum computer is performed. In practice, the procedure of encoding
data into the quantum system is part of the algorithm and may account for a crucial part
of the complexity. For example, preparing a generic n-qubit quantum state can in the
worst case need a exponential number of gatesO(2n) with N = log2 n features [60]–which
would impair any possible advantage of a quantum algorithm. Therefore, a quantum
encoding is called efficient if its runtime is logarithmic or linear.

Let us consider the data set asD = {x1, . . . ,xM} where each xi consists of a continuous
n-feature data point. In practice, each data point is encoded via a state preparation
circuit using only one- and two-qubit gates. It maps the data set D to an n-qubit state
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in the Hilbert space H and reads:

E:D → H
x 7→ E(x).

Each encoding needs to have different properties:

• E should have as little as possible qubits but as many as necessary ;

• E should have a number of gates polynomial in the number of qubits to minimize
the width and the depth of the quantum circuit ;

• E should be bijective: each data point x should be represented by a unique quan-
tum state |x〉.

In this thesis, we present the basis encoding [61], the angular encoding [62–65] and
the amplitude encoding [64–66]. Other embedding exist in the literature [67].

Basis encoding Basis encoding is primarily used for arithmetic operations in a quan-
tum algorithm. One can transform real numbers into their binary encoding and then
map them onto a computational basis state of a quantum state. For a continuous data
point, its value is approximated by its binary representation.

In other words, each feature j = 1, . . . , n of the data point xi is represented by a
quantum state in {|0〉 , . . . , |2dj − 1〉}. Here dj corresponds to the number of qubits used
to describe the corresponding feature. It means that each feature of each data point xi
is discretized and the binary representation of the discretized version x̃i in di bits uses
di qubits.

For example, in a data set with 2 features x1 and x2 with x1 ∈ [2.2, 5.3] and x2 ∈
[6.1, 10], we can choose to represent the data point x = (4.54, 6.5) with 2 qubits for the
first feature and 3 qubits for the second one. In that case, the domain of the first feature is
now {2.2, 3.2, 4.2, 5.2} and for the second one it is {6.1, 6.58, 7.07, 7.56, 8.04, 8.54, 9.02, 9.51}.
Therefore, x is mapped to x̃ = (4.2, 6.58) with the binary representation 10 and 001. In
the end, x is embedded with the quantum state |00110〉.
Thus, each data point needs

∑n
i=1 di qubits. While it is simple to understand and re-

quires preparation circuits of depth O(1), basis encoded data sets requires to discretize
the data set which means that for NISQ computers, features taking a lot of different
values cannot be efficiently embedded into a quantum state.

Angle encoding [63–65] Due to the NISQ limitations, the angle encoding is the most
common and the simplest form of encoding classical data into a quantum state. It uses
n qubits to encode an n feature data point as

|x〉 =
n⊗
i=1

R(xi) |0〉i . (3.13)

Here, |j〉i corresponds to the state j = 0, 1 acting on qubit i. R corresponds to one of
the single-qubit rotations Rx, Ry or Rz. For this thesis, we choose the angle encoding
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with Ry gates. For example the data point x = (π, π, π)T is embedded in the quantum
state |x〉 = |111〉. The main advantage of this method is that it only needs n qubits
and one rotation on each qubit, making it amenable for NISQ computers. The main
drawback of this approach is that this encoding does not ensure to have a one-to-one
encoding. One must note that even if this embedding is optimal for continuous input
features, due to the periodicity of the Ry encoding, the input data value has to be scaled
in an interval in [0, 2π].

Amplitude encoding This embedding encodes data into the amplitudes of a quantum
state. It represents a normalised classical n-dimensional data point, x, as the amplitudes
of a log2(n) qubit quantum state. Thus, a data point x = {x1, . . . , xn} is represented by

|x〉 = 1
‖x‖

n∑
i=1

xi |i〉 . (3.14)

Here ‖x‖2 =
∑n
i=1|xi|2. For example, the data point x = (1, 1,−1,−1) is embedded into

the quantum state |x〉 = 1
2 |00〉+ 1

2 |01〉− 1
2 |10〉− 1

2 |11〉. As a system of n qubits provides
2n amplitudes, amplitude embedding requires log2(n) qubits. The main disadvantage of
this method is that this encoding requires in general a circuit depth O(2n) and can be
very hard to construct.

The different strategies are summed up in Table 3.1.

Encoding Number of qubits Input features
Basis

∑n
i=1 di Binary

Angular n Continuous
Amplitude logn Continuous

Table 3.1.: Comparison of the three encoding strategies for a data point with N features
each. Here di corresponds to the number of qubits used to describe one feature in the
basis encoding scheme.

2.3. Definition
In this thesis, we focus on the training of a fully quantum GAN with a classical input

data set given by a quantum process, a quantum generator and a quantum discriminator.

We have to represent the classical input data set with a quantum data set {|x1〉 , . . . , |xM 〉}.
In the remainder of this work, we shall refer to this data set as the training quantum
data set.

The generator is a parametrized quantum channel and is trained to transform the
basis state |0〉⊗n to an n-qubit output state :

|G〉 = G(θG) |0〉⊗n . (3.15)

The quantum circuit G(θG) consists of an initialization layer and alternating layers
of parametrized single-qubit-rotations and blocks of two-qubit-entanglement gates. In
this thesis, we used Pauli-Y gates for the qubit rotations and controlled-Z-gates for the
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|G〉

|0〉

G(θG) D(θD)...

|0〉

|xi〉

|0〉

Ri D(θD)...

|0〉

Figure 3.2.: General qGAN to learn the training quantum data set {|x1〉 , . . . , |xM 〉}.
At each training step, the discriminator receives the generated state |G〉 and a batch of
the embedded data points |xi〉 = Ri |0〉.

entanglement gates [68, 69]. The initialization layer consists of Hadamard gates H [42]
on all qubits. In total, the circuit has (k + 1)n parametrized Pauli-Y rotation and kn
controlled-Z gates. The quantum circuit of the generator is shown in Fig. 3.3.

repeat k times

|0〉 H Ry(θ0,j
G ) • •

...
...

|0〉 H Ry(θi,jG ) • •

...
...

|0〉 H Ry(θn−1,j
G ) • •

Figure 3.3.: Ansatz for the generator G(θG). θi,jG corresponds to the parameter of Ry
rotation acting on the i qubit on the j layer.

The discriminator is also a parametrized quantum circuit. The variational form of
the discriminator consists of parametrized single-qubit rotations, Pauli-X (RX), Pauli-
Y (RY ) and Pauli-Z(RZ) rotations on all qubits followed by controlled-X gates (CX) [42]
with the target qubit on the last qubit. Finally, the three single-qubit rotations are
applied on the last qubit. The discriminator applies the variational form to a n-qubit
input quantum state, and labels it as real or fake. This classification is made by a
measurement of the last qubit in the computational basis, i.e., in the qubit ordering
convention, w.r.t. a Z⊗1⊗ . . .⊗1 observable, with Z the single qubit Pauli-Z. An input
state is classified as real or fake if the measurement outcome is -1 or 1, respectively. In
total, the circuit has 3(n+1) parametrized single-qubit rotations. The quantum circuit of
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the discriminator is shown in Fig. 3.4. Both generator and discriminator are represented

|0〉 Rx(θ1,1
D ) Ry(θ1,2

D ) Rz(θ1,3
D ) •

...
...

...
|0〉 Rx(θi,1D ) Ry(θi,2D ) Rz(θi,3D ) •

...
...

...
|0〉 Rx(θn,1D ) Ry(θn,2D ) Rz(θn,3D ) Rx(θn,4D ) Ry(θn,5D ) Rz(θn,6D )

Figure 3.4.: Ansatz for the discriminator D(θD). θi,jD corresponds to the j parameter
of Ry rotation acting on the i qubit.

by hardware-efficient parametrized quantum circuits [68, 70], G(θG) and D(θD), as shown
in Fig. 3.2.

2.4. Training

At every training step, as in the classical case, the generator aims at fooling the discrim-
inator while the discriminator is trying to distinguish between training and generated
data. After convergence, the generator is supposedly able to generate quantum states
indistinguishable from the training quantum data set {|x1〉 , . . . , |xM 〉}.

To simplify the notation, we now introduce helper functions CSD where S ∈ {G;R}

CGD(θG, θD) = 1− 〈G|D†(θD) (Z ⊗ 1⊗ . . .⊗ 1)D(θD)|G〉
2 (3.16)

CRD(θD) = 1
2[1− 1

M

M∑
j=1
〈xi|D†(θD) (Z ⊗ 1⊗ . . .⊗ 1)D(θD)|xi〉] (3.17)

with |G〉 denoting the generator state, each |xi〉 denoting each training data point and
M denoting the total number of data points. The respective functions determine the
probability P of the discriminator measurement corresponding to −1.

Firstly, the generator G(θG) intends to generate a state |G〉 that reproduces the desired
quantum data set {|x1〉 , . . . , |xM 〉}. The loss function for the generator reads:

CG(θG, θD) = −CGD(θG, θD) (3.18)

with CGD given by Eq. 3.16. The loss function aims at maximizing the probability for
the generated state |G〉 being labeled as real by the discriminator.

Secondly, the discriminator D(θD) tries to discriminate the generator |G〉 output from
the quantum data set {|x1〉 , . . . , |xM 〉}. The loss function of the discriminator reads:

CD(θG, θD) = CRD(θD)− CGD(θG, θD) (3.19)
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2. Quantum GAN

with CRD being again given by Eq. 3.16. In other words, the goal is to maximize the
probability that each quantum state |xi〉 is labeled as real by the discriminator. Ideally,
the generator is learning the state

|G〉 =
M∑
j=1

√
pj |xj〉 (3.20)

with each pj denoting the sampling probability for the data point |xj〉

Both loss functions of Eqs. 3.18 and 3.19 are optimized in an alternating fashion by
computing their analytical gradient [71] offered by the parameter shift rule [72, 73]. In
practice, at each optimization step, the discriminator is trained with single samples of
the true data, compared to the generator which is trained with the full generator state.
Therefore, to improve the stability of the algorithm, this alternating training is done
with more optimization iterations for the discriminator. The entire training is shown in
Algorithm 2.

input : Training quantum data set {|x1〉 , . . . , |xM 〉}, batch size m, the
number of discriminator iterations per generator iteration k, generator
optimizer OptG and its parameters, discriminator optimizer OptD and
its parameters.

1 for number of training steps do
2 for k steps do
3 Compute CGD(θG, θD) = 1−〈G|D†(θD)(Z⊗1⊗...⊗1)D(θD)|G〉

2 ;
4 Sample a batch of m data points {|xi〉}mi=1.;
5 Compute

CRD(θD) = 1
2 [1− 1

m

∑m
j=1 〈xi|D†(θD) (Z ⊗ 1⊗ . . .⊗ 1)D(θD)|xi〉] ;

6 Compute the analytical gradients ∇θDCSD(θG, θD) with S ∈ {R,G};
7 Update the discriminator parameters by optimizing CD(θG, θD) w.r.t.

θD with the gradient-based optimizer OptD and analytical gradients ;
8 θD ← θD −OptD(CRD(θD)− CGD(θG, θD))
9 end

10 Compute CGD(θG, θD) = 1−〈0|G(θG)D†(θD)(Z⊗1⊗...⊗1)D(θD)G(θG)|0〉
2 ;

11 Compute the analytical gradients ∇θGCGD(θG, θD) ;
12 Update the generator parameters by optimizing CG(θG, θD) w.r.t. θG with

the corresponding gradient-based optimizer OptG and analytical gradients ;
13 θG ← θG −OptG(CGG(θG, θD))
14 end

Algorithm 2: qGAN training algorithm.
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4. Anomaly detection with Generative
Adversarial Networks

In spite of the existence of many theoretically motivated BSM models, like supersym-
metry [74] or loop quantum gravity [75], there was no significant evidence of new physical
signals since the last particle of the SM has been discovered in 2012 [76]. The recent
developments in machine learning lead to new techniques to detect deviations from the
SM [77–81]. The absence of knowledge outside the SM framework motivated the use of
unsupervised learning techniques to study and find rare events outside the spectrum of
the SM [82–84]. In this chapter, we introduce a method for anomaly detection that em-
ploys (quantum) GANs. More explicitly, we outline how to compute an anomaly score
based on a (quantum) GAN that is trained on SM data.

1. Related work

In data science, an anomaly corresponds to a data point that significantly deviates
from the rest of the data set [85, 86]. Anomaly detection, also known as outlier detec-
tion, corresponds to the identification of these outliers. Being able to detect these rare
data points is particularly useful in various domains from wireless sensor networks [87],
fraud detection, data cleaning, detection of cancer [88], or intrusion attacks in cyberse-
curity [89].

1.1. Anomaly detection with classical unsupervised learning

Unsupervised methods for anomaly detection try to identify events that do not look
like background events without using prior knowledge. One method is to learn the
probability distribution of the whole background and to look for events with a very
low probability. However, learning these high-dimensional densities is a hard task to
accomplish. Thus, to avoid this difficulty, practical anomaly detection rather relies on
designing a score to determine whether a particular event is uncharacteristic of a given
background distribution. In practice, deep learning methods use a compressed latent
space to efficiently learn background events with variational autoencoders [90] or gen-
erative adversarial networks [4]. The latent space is an efficient representation of the
input data, which captures all important structures, such that the event can be fully
reconstructed with the decoder. If the decoded data point does not resemble the input
data, then it is identified as an anomaly.

A GAN framework, called AnoGAN, introduced in [4] uses the adversarial nature of
the two networks to flag anomalous data points. Firstly the adversarial networks learn
the structure of the non-anomalous data set. Then, an anomaly score is calculated on
the testing data set and/or on new data points to determine if each new data point fit
into the learned distribution. This is done by finding the optimal latent variable mini-
mizing the anomaly score for each data point. Depending on the value of this metric, the
respective event is labeled as anomalous or normal. Different variations of this approach
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4. Anomaly detection with Generative Adversarial Networks

are possible, i.e., a WGAN with gradient penalty can be used instead of a standard GAN
as in [91]. However, this approach requires an optimization for each testing data point to
recover the optimal zopt using stochastic gradient descent for example. This procedure
is computationally expensive as every gradient computation requires backpropagation
through the generator network. To speed up the anomaly detection scheme, the gener-
ator is usually coupled with a variational autoencoder [92] or also with a bi-directional
GAN, which is then called the BiGAN model [93, 94].

1.2. Anomaly detection with qGANs
The anomaly detection method introduced above may also be combined with quan-

tum resources, e.g. in the form of a qGAN.
Depending on the nature of the data, different approaches are possible. If the process

generating the training data is governed by quantum mechanics, i.e. the data is generated
by a quantum channel G∗, then the use of a qGAN can enable the learning of a model
for G∗ with a parameterized quantum circuit G as generator.

In [95], the authors adapt the classical AnoGAN approach to the quantum framework
and apply their method for fraud detection. The discriminator is a classical neural
network while the generator consists of a parameterized quantum circuit with a classical
neural net. The quantum circuit operates on a low-dimensional latent space while the
classical neural net scales expectation values obtained from this circuit to the higher-
dimensional data space. The AnoGAN is then trained on a non-anomalous data set and
for each new data point, an optimal latent variable is found to define its anomaly score.
Contrary to this approach, in this thesis, we use a fully quantum GAN model, i.e. with
a quantum generator and a quantum discriminator. We choose this approach because:

• a quantum generator has the advantage of providing a native model for the physical
process of HEP.

• a quantum discriminator has the advantage of measuring a single qubit. It helps
to reduce the measurement errors and to avoid to have a global objective function
which could suffer from barren plateaus [52, 53].

2. Anomaly score
2.1. Classical anomaly score

In the ideal case, the trained quantum discriminator could directly enable anomaly
detection by classifying anomalous data as fake data. In practice, however, it is unlikely
that the discriminator is trained perfectly. More explicitly, the adversarial training of
both the generator and the discriminator can often lead to unstable learning behavior. As
in the AnoGAN method [4], for the classical framework, we use a anomaly loss function
based on a combination of the influence of the generator and of the discriminator to
compensate for instabilities in the generator/discriminator training, i.e.,

LO(z) = (1− α)‖x− G(z)‖+ α‖D(x)−D(G(z))‖. (4.1)
The first term is a residual loss and computes the similarity between the generated

event G(z) and the testing data point x. The second term is a discrimination loss and
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3. Classification

measures the distance between the generated event G(z) and the testing data point x at
the output of the discriminator.

The classical GAN is first trained on the non-anomalous data set as described in
Section 3. Then, the trained generator and discriminator are used to find the optimal
zopt minimizing LO. The classical anomaly score of the AnoGAN approach reads as:

SO = min
z
LO(z) = (1− α)‖x− G(zopt)‖+ α‖D(x)−D(G(zopt))‖. (4.2)

For example, for a non-anomalous data point x, we have x = G(zopt) for a perfect
generator and we have D(x) = D(G(zopt)) for a perfect discriminator. If this is not the
case, the parameter α weights the importance of both term.

2.2. Quantum anomaly score

Contrary to the approach of [95], the generative model of this thesis is a fully quan-
tum GAN setup as described in section 2 of chapter 3.

Firstly, the qGAN learns the quantum representation of the data set {|x1〉 , . . . , |xM 〉}
in the routine described in Algorithm 2. Then, every data point x of the test data set
is embedded into a quantum state |x〉 and the anomaly score for this fully quantum
framework reads:

SO = (1− α)|〈x|G〉|2 + α
1 + sgn(〈Z〉|x〉 〈Z〉|G〉)

2 . (4.3)

Like in the classical case, the first term is a residual score. It tells us how close the new
embedded data sample |x〉 is to the trained generator state |G〉. For a non-anomalous
data point x, a perfect generator yields 〈x|G〉 = 1.

The second term is a discriminator score. It represents the influence of the discrimi-
nator 〈Z〉|x〉 and is computed as follows: we load the state |x〉 into the discriminator and
measure the last qubit of D. Then the discriminator score is 1 if the Z-measurement
w.r.t. a Pauli-Z observable corresponds to the same eigenvalue and 0 otherwise. For a
non-anomalous data point |x〉, a perfect discriminator yields 1+sgn(〈Z〉|x〉〈Z〉|G〉

2 = 1

Finally, the parameter α weights the importance of both networks for the anomaly
score.

3. Classification

3.1. Metrics

The performance of an anomaly detection problem is usually measured with different
metrics, e.g. Receiver Operator Characteristics (ROC) curve, Accuracy, F1 score, Recall
and precision.
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4. Anomaly detection with Generative Adversarial Networks

This problem corresponds to a binary classification problem : the normal class is
labeled 0 and the anomaly class is labeled 1. We first define the confusion matrix for
our problem as in Table 4.1.

Real Anomaly Real Non-Anomalous
Predicted Anomaly True Positive False Positive
Predicted Non-Anomalous False Negative True Negative

Table 4.1.: Confusion matrix of an anomaly detection problem.

True positive corresponds to the number of the detected anomalies that are correctly
predicted by the classifier while false positive corresponds to the number of flagged data
points that are actually not anomalies. Similarly, false negative corresponds to the
number of detected non-anomalous data points that were anomalies while true negative
corresponds to the detected non-anomalous data points that were non-anomalous. The
true positive rate (TPR) and the false positive rate (FPR) then read :

TPR = True Positive
True Positive + False Negative , FPR = False Positive

False Positive + True Negative . (4.4)

Accuracy Score is the most commonly used metrics in an anomaly detection problem.
It corresponds to the proportion of correct predictions and reads

Accuracy = Correct predictions
Total predictions (4.5)

= True Positive
True Positive + False Positive + False Negative + True Negative . (4.6)

However, the accuracy score can not be the only metrics to measure the quality of a
ML problem, especially with imbalanced labels or for which the desired weighting of the
labels is unknown [96] as in an anomaly detection problem.

ROC Curve It corresponds to the plot of the true positive rate versus the false positive
rate. The ROC curve essentially measures the performance of a binary classifier as
its cutoff threshold is varied. In practice, the area under the ROC curve, the Area
Under Curve (AUC), is a widely used measure of the potential predictive value of a
feature [97, 98].

Recall corresponds to the proportion of true anomalies that was correctly identified.
It reads

Recall = True Positive
True Positive + False Negative . (4.7)

Precision corresponds to the proportion of positive identifications that was actually
correct. It reads

Precision = True Positive
True Positive + False Positive . (4.8)
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F1 Score Lastly, the F1-score measures the global performance of the anomaly detec-
tion. It corresponds to the harmonic mean of the precision and of the recall. It reads

F1 = 2
Recall−1 + Precision−1 . (4.9)

In all of these metrics, the closer the metrics is to 1, the better the anomaly detection
scheme is.

3.2. Anomaly detection algorithm
Both the classical and quantum anomaly detection scheme are similar. The anomaly
score is computed for each single point of the training data set and for each single point
of the testing data set. The mean of the anomaly scores for the data sets define thresh-
olds which in turn help to identify whether testing data points correspond to anomalies
or not. A grid search for the best α parameter can help to improve the anomaly detec-
tion by maximizing the AUC.

The difference between the classical and the quantum approach lies in the expected
behavior of the anomaly score for anomalies and for non-anomalous data points:

• in the classical case, the anomaly score is expected to be as close as possible to 0
for the non-anomalous data points and way bigger for anomalies ;

• in the quantum case, the anomaly score is expected to be as close as possible to 1
for the non-anomalous data points and as close as possible to 0 for anomalies.

However, in practice, we are most importantly interested in finding a hyperplane
separating the non-anomalous data points and the anomalous data points. The anomaly
detection procedure is explained in Algorithm 3.
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4. Anomaly detection with Generative Adversarial Networks

input : Training data set D = {x1, . . . ,xM} (or {|x1〉 , . . . , |xM 〉} if quantum
GAN), testing data set T the number of discriminator iterations per
generator iteration k, generator optimizer OptG and its parameters,
discriminator optimizer OptD and its parameters.

1 for number of training steps do
2 The generative structure (G,D) is trained based of Algorithm. 11 or 2.
3 end
4 for α ∈ [0; 1] do
5 for x ∈ D ∪ T do
6 if classical then
7 Compute SO(x) = minz[(1− α)‖x− G(z)‖+ α‖D(x)−D(G(z))‖ by

backpropagation ;
8 else

9 Compute SO = (1− α)|〈x|G〉|2 + α
1 + sgn(〈Z〉|x〉 〈Z〉|G〉

2 .
10 end
11 end
12 Compute ROC Curve and AUC(α) score ;
13 Compute F1(α), Accuracy(α), Recall(α) and Precision(α) score by varying

a cutoff threshold.
14 end
15 Compute AUC(αmax) = maxα AUC(α) Return classification score F1(αmax),

Accuracy(αmax), Recall(αmax) and Precision(αmax)
Algorithm 3: Anomaly detection algorithm.
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5. Methodology

1. Data sets

The training data is given by a data set representing a weighted mixture of different
SM processes typically observed at 13 TeV with weights given by the production cross
section of the corresponding process [99]. This accounts for the most representative pro-
cesses in the SM. In this thesis, every SM process is the result of simulations made in
[99] and do not include the Higgs boson. Therefore, this thesis treats the Higgs boson
as an anomaly from the SM.

More specifically, the considered SM event can be generated with a Monte Carlo sim-
ulator for a specific physical process that is based on a specific either SM or a BSM
theory. It generates the necessary inputs to a detector simulation program with a soft-
ware such as PYTHIA8 [100]. The particles are then tracked in the detector materials
by studying their interaction with material. Another simulation framework such as
DELPHES3 [101] creates the detector response and produces the ideal response of the
detector. The program is only set up to handle collisions either between hadrons, such
as proton p, antiproton p̄ or between same-generation leptons. That is, proton-proton
pp, proton-antiproton pp̄ and electron-positron e+ e− beam combinations can be used,
but not electron-proton ep, photon-proton γp or proton-proton γγ. In practice, the
simulated detector response can be compared with the detector measurements in real
experiments conducted at LHC.

However, HEP theories need physics-motivated high level features to interpret the
result of collision measurements. Therefore, a feature reconstruction algorithm, called
particle-flow reconstruction algorithm [102] is applied. It takes as input the result of the
detector response (from a simulation or from an experiment) and aims at reconstruct-
ing and identifying all known stable particles (charged particle, photons and neutral
hadrons). It reconstructs the measured energy and flight direction for each identified
particles and outputs lists of reconstructed electrons, muons and jets. Each event is
characterized by a list of 23 physics-motivated high-level features [103].

Events are post-processed by requiring the emission of an electron, muon, or tau lepton
with pT > 23GeV . This selection also requires the presence of one reconstructed electron
or muon with an isolation requirement Iso < 0.45. The isolation reads

Iso =
∑
p 6=q p

p
T

pqT
. (5.1)

The anomalous data sets correspond to the simulation of BSM processes obtained with
PYTHIA8 Monte Carlo simulator [100, 101, 104]: the Higgs boson and the graviton data
sets are considered.
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Feature name Definition

0 HT

The scalar sum of the transverse momenta pT of all jets
having pT > 30 GeV and |η|< 2.4.
HT characterizes hadronic component of event.

1 pmissT,|| The parallel component of pmissT with respect to the lepton.
2 pmissT,⊥ The orthogonal component of pmissT with respect to the lepton.

3 MT

The combined transverse mass of the lepton and the Emiss system,
which is given by MT =

√
2plTEmissT (1− cos ∆φ).

4 NJ The number of jets entering the HT sum.
5 NB The number of jets identified as originating from a b quark.
6 MJ The invariant mass of all jets entering the HT sum.
7 plT The lepton pT .
8 ηl The lepton pseudorapidity.

9 Isolch
The lepton isolation, Iso =

∑
p6=q p

p
T

pqT
where the sum goes over all leptons except lepton q within ∆R < 0.3.

10 Isolγ Same as Isolch but with the sum going over all photons.
11 Isolneu Same as Isolch but with the sum going over all neutral hadrons.
12 ql The lepton charge (either −1 or +1).
13 IsEle A flag set to 1 if the lepton is an electron, 0 if it is a muon.
14 Nµ The number of muons entering the sum in pµT,TOT .
15 Mµ The combined invariant mass of all muons entering the sum in pµT,TOT .
16 pµT,TOT The vector sum of the pT of all PF muons in the event with pT > 0.5 GeV.
17 Ne The number of electrons entering the sum in peT,TOT .
18 Me The combined invariant mass of all electrons entering the sum in peT,TOT .
19 peT,TOT The vector sum of the pT of all PF electrons in the event with pT > 0.5 GeV.
20 Nch The number of all charged hadron PF-candidates.
21 Nneu The number of all neutral hadron PF-candidates.
22 Nγ The number of all photon PF-candidates.

Table 5.1.: High level features (HLFs) of the data set.

2. Feature Selection

Quantum algorithms are currently run on small noisy devices. In this thesis, each feature
of the data set is represented by one qubit. This implies that data needs to be efficiently
compressed in order to be studied with a quantum approach. This data reduction is
done with the Principal Component Analysis (PCA) method [105].

This method tries to find the (combination of) features that vary the most across the
data samples. PCA is usually used to visualise the data in a low dimensional space
and to reduce the dimensionality of the input data to an amount such that the selected
algorithm can handle.

Given a data set D = {x1, . . . ,xm} of m samples with n data features, we can arrange
our data in the form of a m by n matrix X. The algorithm of the procedure aims at
getting linear combinations of the original features shown in Algorithm 4.
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3. Quantum representation of the data set

input : Data set matrix X, number of components ncomponents
1 Center the data by subtracting from each column the mean of that column,

xi ← xi −
1
m

m∑
i=1

xi (5.2)

2 Form the n by n covariance matrix

C = XTX =
m∑
i=1

xixTi (5.3)

3 Diagonalize C to the form C = XTX = WΛW T . The columns of W are the
normalized eigenvectors, called principal components, and Λ is a diagonal
matrix with the corresponding eigenvalues ;

4 Pick the ncomponents largest eigenvalues λ1, . . . , λncomponents and their
corresponding eigenvectors v1, . . . ,vncomponents . Construct the n by
ncomponents matrix W̃ = [v1, . . . ,vncomponents ] ;

5 Dimensional reduction. Transform the data matrix as :

X̃ = XW̃ (5.4)

Algorithm 4: PCA algorithm to reduce the dimensionality of a problem.

3. Quantum representation of the data set
Data embedding In this thesis, each data point contains features with continuous
values. Discretization would imply using a significant amount of qubits to describe
every feature. Thus, basis encoding is not considered. Amplitude encoding would imply
using large depth quantum circuits to represent each data point compared to the angle
encoding and its constant depth O(1). Thus, we decide to embed the classical data
points using the angle encoding with Ry rotation presented in section 2.2 of chapter 3.

Feature scaling Due to the periodicity of the Ry encoding, the training data set was
scaled in [−π

2 ,
π
2 ] using a “MinMaxScaler” [106]. The transformation is given by

Xscaled = X −min(X)
maxX −minXπ − π

2 (5.5)

Once fitted to the training data set, the scaler is applied to the testing data set.
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6. Results and Discussion

In this chapter, we present the results of the GAN based anomaly detection workflow
on data sets of SM, Higgs and Gravitons events.

1. Recognizing a Standard Model event

In HEP, anomaly detection is efficient if we are able to affirm that an event corresponds
to an SM process with a high probability. Specifically, we can characterize a data point
well if we have sufficient information about it. More explicitly, we need to consider
sufficiently many features to ensure a reliable training of the model. However, it should
be noted that if too many features are considered in the training data this might also
not be helpful. It is, thus, important to choose the used data features wisely, e.g., by
using feature selection. This can be seen by looking at the cumulative explained variance
obtained with PCA on the SM data set, w.r.t. the number of principal components. This
is shown in Fig. 6.1. It shows that it needs a small amount of principal components to
recognize the graviton while 10 principal components are needed to fully describe an SM
data point and a Higgs data point.
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Figure 6.1.: Cumulative explained variance of the test data point w.r.t. the number of
principal components. A PCA is applied to each data set and the cumulative variance
is computed.

2. Classical benchmark

To put the performance of the quantum approach into context, we benchmark it against
a comparable classical approach. The comparison is done by using the same amount of
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parameters as in the quantum case. We look at following setups of classical GANs (W
and b are the weight and bias parameters of a layer in the GAN):

• A reference GAN where every layer has the form f(x) = LeakyReLUα(Wx + b).
We refer to this setup as the “vanilla” setup.

• The reference GAN with a dropout layer with probability 1
4 . This means that the

dropout layer ignores a randomly selected subset of neuron outputs in the network
only during training with probability 1

4 . We refer this setup as the dropout setup.

• A GAN where all layer have the form f(x) = ReLU(Wx+ b). We refer this setup
as the ReLU setup.

• A GAN where all layer have the form f(x) = σ(Wx + b). We refer to this setup
as the sigmoid setup.

Here, we have :

ReLU(x) = max(x, 0) , (6.1)

LeakyReLUα(x) =
{
x if x ≥ 0
αx if x < 0

, (6.2)

σ(x) = 1
1 + exp(−x) . (6.3)

In all setups, the last layer uses a sigmoid activation function.

We also look at the same four setups but with WGANs. In the following, we look at
the results for two features and for eight features.

2.1. Anomaly detection with 2 features

With two features, we use 6 trainable parameters for the generator and 11 for the
discriminator. All of the LeakyReLU functions in the following have a parameter α = 0.2.
Firstly, we train all of the neural networks for 1000 epochs using the Adam optimizer [37]
with a learning rate of 10−3 and momentum terms (β1, β2) = (0.7, 0.99). The loss
functions of two different GAN/WGAN architectures converge at the end of the training
procedure and are shown in Fig. 6.2.

In all cases, the generator and discriminator loss functions do not evolve that much.
The best training behavior is not the main goal of this thesis, as long as the classification
is possible.

Once the training is finished, the anomaly score is computed for each single point in the
training and testing data set as in [4]. Each anomaly value is computed by optimizing
the anomaly loss function defined in section 1.1 of chapter 4. This is done with the
Adam optimizer with learning rate 10−3 and momentum terms (β1, β2) = (0.7, 0.99)
and during 1000 epochs. The mean of the anomaly scores for the training data sets
defines thresholds which in turn help to identify whether testing data points correspond
to anomalies or not. A grid search for the best α parameter can help to improve the
anomaly detection by maximizing the AUC. Due to their similarities, we restrict the
plots to the anomaly score w.r.t. the α parameter to the “vanilla” setup (see Fig. 6.3).

32



2. Classical benchmark

0 200 400 600 800 1000
Epochs

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

 fu
nc

tio
ns

Generator
Discriminator

(a) Vanilla GAN

0 200 400 600 800 1000
Epochs

0

1

2

3

4

5

6

7

Lo
ss

 fu
nc

tio
ns

Generator
Discriminator

(b) Sigmoid WGAN

Figure 6.2.: Loss functions of different GAN and WGAN architectures for 2 features:
(a) “Vanilla” GAN setup . (b) Sigmoid WGAN setup. In all plots, the blue curve
corresponds to the generator loss function and in orange the discriminator loss function.

The search of the optimal α is shown in Fig. 6.3 : the left panel represents the mean
of the anomaly score of each data set with their 95%-confidence interval w.r.t. the α
value. We can see that the optimal configuration is for α = 0 giving the maximum AUC
score of 0.82 for which the individual anomaly scores are shown in the right panel of
Fig. 6.3. In the figure, the anomaly score values of the Higgs events overlap with those
of the SM data set, while for the Graviton events, the scores are better separated from
the non-anomalous data set. It hints at being able to well classify Graviton events as
anomalies while for Higgs events, it is harder.

The performance of the anomaly detection scheme is measured by looking at different
metrics for all of the GANs/WGANs (see left panel of Fig. 6.4 and Table. 6.1.) All metrics
are computed by varying a cutoff threshold. The Vanilla and Dropout GAN/WGAN all
yield a good AUC score of 0.82 but overall, the vanilla and dropout GAN have the best
classical performance.

2.2. Anomaly detection with 8 features

With 8 features, we use 88 variational parameters for the generator and 27 for the
discriminator. Firstly, the training of the neural networks are done for 1000 epochs
using the Adam optimizer with a learning rate of 10−3 and momentum terms (β1, β2) =
(0.7, 0.99). Once again, the loss functions are converging to a fixed value while not
varying too much during the training (see Fig. 6.5).

We then repeat the procedure of the anomaly detection scheme with 8 features. For
each testing data point, we find the anomaly score value by optimizing the corresponding
anomaly loss function with the Adam optimizer for 1000 epochs. The situation is similar
as with 2 features. The optimal configuration is obtained for α = 0 and an AUC score
of 0.78 where the SM data points have an anomaly score concentrated around 1 and
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Figure 6.3.: Anomaly score scheme with 2 features in the “vanilla” setup of the classical
benchmark : (a) Anomaly score w.r.t. α parameters while (b) corresponds to the optimal
configuration for all the data point in the test data set and α = 0. In all plots, the blue
points correspond to the SM data points and the area corresponds to the 95%-confidence
interval. The orange points correspond to the graviton data points and the orange area
the 95% confidence interval and in orange the discriminator loss function. The green
point correspond to the Higgs data points and the green area denotes the 95% confidence
interval.
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Figure 6.4.: ROC curves of the different GAN/WGAN architectures with 2 features(a)
and with 8 features (b).
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2. Classical benchmark

Architecture F1 score Accuracy Precision Recall ROC-AUC
Vanilla GAN 0.66 0.77 1 0.96 0.82

Vanilla WGAN 0.5 0.67 0.33 1 0.82
Dropout GAN 0.66 0.77 1 0.96 0.82

Dropout WGAN 0.5 0.67 0.33 1 0.82
Sigmoid GAN 0.52 0.67 1 0.99 0.58

Sigmoid WGAN 0.5 0.67 0.73 1.0 0.58
ReLU GAN 0.54 0.67 1.0 0.95 0.62

ReLU WGAN 0.5 0.67 0.33 1.0 0.62

Table 6.1.: Best classical classification metrics for the classification metrics with 2
features.
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Figure 6.5.: Loss functions of different GAN and WGAN architectures with 8 features:
(a) “Vanilla” GAN setup and (b) Sigmoid WGAN setup. In all plots, the blue curve
corresponds to the generator loss function and in orange the discriminator loss function.

overlaps with almost all of the Higgs data set anomaly score values. However, the
Graviton data set anomaly score covers almost all the interval [2, 15] (see Fig. 6.6). This
hints at the same situation as with 2 features: while the Graviton events can be easily
detected as anomalies the Higgs events cannot.

The classification however is different than with only 2 features (see Table. 6.2). All of
the AUC scores are lower than with 2 features (see right panel of Fig. 6.4). In particular,
we can see that every F1 score and every recall score are below 0.20 except for the sigmoid
GAN case with a F1 score of 0.33 and a recall score of 0.22. Also, we can observe that
having a high AUC score does not imply having good classification metrics. The ReLU
GAN has the highest AUC score of 0.78 while having a very low recall score of 0.064 and
a low F1 score of 0.14. This discrepancy can be explained by the method used to get the
metrics. Since they are obtained with a varying cutoff threshold, more threshold points
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6. Results and Discussion

could give a better estimation of the different metrics. This phenomenon also hints that
the more features we use the harder it is to train a model and so the more difficult it is
to detect anomalies in a model that is not well-trained.
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Figure 6.6.: Anomaly score scheme with 8 features in the classical benchmark. (a)
shows the anomaly score mean w.r.t. to the α parameters. The optimal configuration
for α = 0 is shown in the right panel (b) for the whole testing data set. In all plots,
the blue points correspond to the SM data points and the area corresponds to the 95%-
confidence interval. The orange points correspond to the Graviton data points and the
orange area the 95% confidence interval and in orange the discriminator loss function.
The green point correspond to the Higgs data points and the green area denotes the 95%
confidence interval.

Architecture F1 score Accuracy Precision Recall ROC-AUC
Vanilla GAN 0.03 0.67 1 0.01 0.68

Vanilla WGAN 0.04 0.67 1 0.02 0.68
Dropout GAN 0.03 0.67 1 0.01 0.68

Dropout WGAN 0.04 0.67 0.53 0.01 0.68
Sigmoid GAN 0.33 0.71 1 0.22 0.77

Sigmoid WGAN 0.16 0.68 1 0.09 0.77
ReLU GAN 0.14 0.69 1.0 0.08 0.78

ReLU WGAN 0.11 0.68 1 0.06 0.78

Table 6.2.: Best classical classification metrics for the classification metrics with 8
features
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3. Quantum benchmark

Number of features F1 score Accuracy Precision Recall ROC-AUC
2 0.655 0.77 1 1 0.82
3 0.75 0.84 1 1 0.90
4 0.74 0.84 1 1 0.90
5 0.96 0.97 1 1 1
6 0.92 0.75 1 1 0.81
7 0.79 0.73 1.0 1 0.89
8 0.33 0.71 1.0 0.22 0.78

Table 6.3.: Best classification score obtained in the classical framework for each dimen-
sion between 2 and 8 features.

2.3. Comparison of the different performances w.r.t. dimensions

In this thesis, we also try to compare the performance of the classification as we increase
the number of features. The more features we add to the model, the easier it should
be to recognize an SM event. In particular, the anomaly detection scheme could have a
better performance in a high-dimensional framework. However, GAN machine learning
models are hard to train, and even if the loss does not converge, the model could still be
exploitable for anomaly detection [107]. Hence, one typically studies alternative metrics
such as the relative entropy to investigate the training convergence.

The best F1, recall, precision, accuracy scores in the classical framework obtained
for each dimension are shown in Table. 6.3. Compared to what is previously stated, the
different classification metrics do not necessarily increase when we add more features. In
particular, we can see that from 2 to 5 features, all of the classification metrics increase.
However, for more than 6 features, there is no clear tendency. In particular, in Fig 6.7,
we can observe this behavior by looking at the ROC of the “vanilla” GAN and sigmoid
WGAN. For the “vanilla” GAN, the ROC-AUC slightly increases as we increase the
dimension by going from a ROC-AUC of 0.82 for 2 features to a score of 0.90 with 4
features. However, as we continue to increase the dimension, the score does not continue
to increase and rather decreases to a score of 0.68. This all hints at the fact the more
features the model has, the harder the training of a GAN.

3. Quantum benchmark

In this section, we present the results of anomaly detection with a qGAN. Our qGAN
approach consists of a quantum generator and a quantum discriminator. Every simula-
tion is done using Qiskit [108] and with the same amount of trainable parameters as in
the classical case. We compare the results for different numerical simulators: an exact
(noiseless) simulator using statevector computations, a noisy simulator that mimic the
noise of a quantum hardware, called qasm simulator with noise. The algorithm is also
run on IBM processors. Compared to the classical simulations, we limit the training
data to a subset of 100 data points. The results presented in this section show that
this training data size can be sufficient to achieve similar performance results with a
qGAN as classical methods with 10 times as much training data. In every simulation,
the discriminator training is done using batches of 30 data points. Due to the current
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Figure 6.7.: ROC Curve for different dimensions in the classical framework in the
vanilla setup (a) and in the WGAN sigmoid setup.

restriction on IBM hardware, qGAN based anomaly detection is only simulated on IBM
hardware with 2 features.

3.1. Anomaly detection with 2 features

The quantum generator is made of 2 repetitions of single-qubit RY gates and two-qubit
CZ. Compared to simulations with more than 2 features, the quantum discriminator
acts on three qubits and is of the form of 3.4. It yields 6 trainable parameters for the
generator and 11 for the discriminator. Furthermore, in every training epoch, we have
5 times more optimization updates for the discriminator than for the generator. Every
optimization was done in Qiskit [108]. We first present the results in a noiseless, exact
simulations with the statevector-simulator.

a. Noiseless simulations

The training corresponds to the Algorithm. 2. We optimize the qGAN structure for
500 epochs with the AMSGRAD optimizer [38], a learning rate of 10−3 and (β1, β2) =
(0.7, 0.99). As in the classical case, the generator and discriminator loss functions rapidly
converge to a fixed value and do not seem to evolve after 200 epochs (see Fig. 6.8). As
stated in the classical benchmark, the best learning behavior is not the goal of this thesis,
as long as classification is possible.

Once the training is done, we compute the anomaly score for each data point of
the testing data set using Eq. 4.3. Contrary to the classical case, the anomaly score
can be calculated directly and does not require an optimization over the latent space.
This is done by first computing the fidelity between each embedded data point |x〉
and the generator state |G〉. Then, the discriminator score is computed by loading each
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Figure 6.8.: Loss function of the quantum GAN using statevector with 2 features. The
blue curve corresponds to the generator loss function and the red one corresponds to the
discriminator loss function.

embedded data point |x〉 into the discriminator, measuring the last qubit and comparing
the measurement result with the one of the generated state |G〉. This procedure is
repeated for each α value and the best value is obtained by looking at the one maximizing
the AUC score (see Fig. 6.9). Here, as in the classical case, the optimal configuration is
obtained for α = 0 and a AUC score of 0.79. In this setup (see right panel of Fig. 6.9),
we can see that the anomaly score values of the SM data set concentrate in the interval
[0.4, 0.82]. The Graviton and Higgs anomaly scores range in [0, 0.9], but most of their
points are located in [0, 0.4]. Since the Higgs and the Graviton data sets contain as
many points as the SM data set, more data points could be located in the region [0, 0.4]
and thus explaining the high classification score (see Table. 6.4) and in the ROC curve
(see Fig. 6.10). Moreover, the SM data points overlap with the Graviton anomaly scores
and not with the ones of the Higgs. In the quantum setting, the SM scores overlap with
both anomalous data points, this explains this discrepancy in the classification metrics
between the quantum and the classical results. However, the quantum simulation yields
similar metrics to the best classical model. The AUC for both models are similar (0.79 for
the noiseless quantum simulations versus 0.82 for the best classical approach). It is also
the case for the F1 score, the accuracy and the recall. However, the classical approach
yields a better precision score (1 versus 0.61 for the quantum case). Therefore, with less
data points, it is possible to obtain a quantum model with a comparable performance as
a classical model. A natural extension would be to use bigger data sets and see if this
improves the classification.

b. Noisy simulator

In this section, we simulate the qGAN training in a noisy simulator which mimics the
behavior of a quantum device. We use the same data sets as before. However, due to
the noise of the quantum hardware, all of the simulations are done with an increased
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Figure 6.9.: Quantum anomaly score scheme with 2 features on a noiseless simulator.
(a) shows the anomaly score mean w.r.t. to the α parameters. The optimal configuration
is shown in the right panel (b) for the whole testing data set and α = 0. In all plots,
the blue points correspond to the SM data points and the area corresponds to the 95%-
confidence interval. The orange points correspond to the Graviton data points and the
orange area the 95% confidence interval and in orange the discriminator loss function.
The green point correspond to the Higgs data points and the green area denotes the 95%
confidence interval.
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Figure 6.10.: ROC curve in 2 features of the best classical GAN architecture and of
the noiseless quantum simulations. In this case, the quantum framework yields similar
results to the classical one.

40



3. Quantum benchmark

Framework F1 score Accuracy Precision Recall ROC-AUC
Noiseless quantum 0.69 0.74 0.61 1 0.79

Best classical 0.65 0.77 1 1 0.82

Table 6.4.: Classification metrics for the qGAN approach with 2 features on a noiseless
simulator and with the best classification metrics.

learning rate of 10−2, 1024 shots and during 100 epochs. With this configuration, the
loss functions converges to the same value as in the noiseless simulations and in the
classical benchmark (see Fig. 6.11). As previously, after the training of the qGAN, the
anomaly score is computed for each point of the data set. Compared to the noiseless
simulations, each term of the anomaly score is obtained with 10,000 shots. The more
shots we use, the closer the behavior of the algorithm gets to the noiseless simulations.
The same α grid search is done to find the one maximizing the AUC value (see left panel
of Fig. 6.12). Once again, as in the noiseless simulations and in the classical benchmark,
the optimal configuration is obtained with α = 0 and a AUC score of 0.52 and shown in
the right panel of Fig. 6.12.
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Figure 6.11.: Loss function of the quantum GAN using a noisy simulator with 2 fea-
tures. The blue curve corresponds to the generator loss function and the red one corre-
sponds to the discriminator loss function.

Compared to the noiseless and classical simulations, the SM data set anomaly scores
range in a larger interval. In the region [0.2, 0.64], the SM, the Higgs and the Graviton
data points give anomaly scores spread uniformly, making the classification really hard
and explaining the bad AUC score of 0.52 (see Fig. 6.13). This can be explained because
the different anomaly scores are not concentrated around a certain value as in the classical
case. In particular, we can see this tendency by comparing the mean of the anomaly
scores versus α for both the quantum and the classical setting. In the left panel of
Fig. 6.9, for almost every α, the anomaly score means of all data sets are almost identical
while for the classical case (Fig. 6.3), they are distinguishable. As the number of shots is
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6. Results and Discussion

Framework F1 score Accuracy Precision Recall ROC-AUC
Noiseless quantum 0.69 0.74 0.61 1 0.79

Noisy quantum 0.55 0.66 0.46 1 0.52
Best classical 0.65 0.77 1 1 0.82

Table 6.5.: Classification metrics for the qGAN approach with 2 features on a noisy
simulator, compared to the best classical results and to the noiseless quantum simula-
tions.

finite, we can expect that the noisy property of the algorithm yields worse results than
in the noiseless framework. We can see that every classification metrics of Table. 6.5 is
lower to the values obtained in the noiseless case and in the classical case. These scores
could be improved if even more shots are used for all components of the anomaly score.
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Figure 6.12.: Quantum anomaly score scheme with 2 features on a noisy simulator. (a)
shows the anomaly score mean w.r.t. to the α parameters. The optimal configuration
is shown in the right panel (b) for the whole testing data set and α = 0. In all plots,
the blue points correspond to the SM data points and the area corresponds to the 95%-
confidence interval. The orange points correspond to the Graviton data points and the
orange area the 95% confidence interval and in orange the discriminator loss function.
The green point correspond to the Higgs data points and the green area denotes the 95%
confidence interval.

c. Hardware runs

Lastly, we run the qGAN based anomaly detection scheme on real hardware. As with
the noisy simulator, the training is made with the same training data set and the opti-
mization is done with an increase learning rate of 10−2, with 1024 shots and with error
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Figure 6.13.: ROC curve in 2 features of the best classical GAN architecture, of the
noiseless and noisy quantum simulations. In this case, the classical framework outper-
forms all of the quantum simulations.

mitigation to improve the robustness of the quantum hardware noise. However, due to
the current limitations on IBM hardware, the training of the qGAN is performed on
20 epochs and seems unfinished since the loss functions do not converge (see Fig. 6.14).
Once the training is done, the anomaly detection computation is also done on real
hardware. We load the parameters of the generator and of the discriminator quantum
circuits. Then, we compute the fidelity between each |x〉 and |G〉 with 10,000 shots and
the same for the discriminator score as previously described. The α search of the opti-
mal configuration giving the best AUC score is obtained for α = 0.75 (see Fig. 6.15). In
this case, more SM data points are gathered in the region [0, 0.2] and overlap with both
the Higgs and the Graviton (as in the classical case). Also, no points lie in the region
[0.25; 0.8], making it a good region to put the hyperplane separating the SM points and
the anomalous ones. Contrary to the noisy simulation, the hardware run gives better
classification metrics (see Fig. 6.16 and Table. 6.6). In particular, the AUC score is
notably higher than the one with the noisy simulation. However, the other classification
metrics (F1 score, accuracy, precision and recall) are similar in the hardware run and
in the noisy simulations (see Table. 6.6). This discrepancy of the performances in all of
the quantum simulations can be explained because the loss functions in the hardware
run do not converge and so, maybe running the simulation until we reach convergence
could yield similar performances than in the other quantum simulations. However, de-
spite this better performance in the hardware run, the best classical simulation is still
outperforming the quantum framework.

3.2. Anomaly detection with 8 features

In this section, as previously presented, the quantum framework is done using both a
quantum generator and a quantum discriminator.
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Figure 6.14.: Evolution of the loss functions with 2 features on real quantum hardware.
The blue curve corresponds to the generator loss function and the red one corresponds
to the discriminator loss function.

0.0 0.2 0.4 0.6 0.8 1.0
 value

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y 

sc
or

e 
va

lu
e

SM dataset
Graviton dataset
Higgs dataset

(a)

0 20 40 60 80 100
Data point

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y 

sc
or

e 
va

lu
e

SM dataset
Graviton dataset
Higgs dataset

(b)

Figure 6.15.: Quantum anomaly score scheme with 2 features on a real hardware. (a)
shows the anomaly score mean w.r.t. to the α parameters. The optimal configuration is
shown in the right panel (b) for the whole testing data set and α = 0.75. In all plots,
the blue points correspond to the SM data points and the area corresponds to the 95%-
confidence interval. The orange points correspond to the Graviton data points and the
orange area the 95% confidence interval and in orange the discriminator loss function.
The green point correspond to the Higgs data points and the green area denotes the 95%
confidence interval.
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Figure 6.16.: ROC curve in 2 features of the best classical GAN architecture, of the
noiseless and noisy quantum simulations and of the hardware simulation. In this case, the
classical framework outperforms all of the quantum simulations. However, the hardware
run yields a better AUC score compared to the other quantum simulations.

Framework F1 score Accuracy Precision Recall ROC-AUC
Noiseless quantum 0.69 0.74 0.61 1 0.79

Noisy quantum 0.55 0.66 0.46 1 0.52
Hardware quantum 0.59 0.66 0.46 1 0.67

Best classical 0.65 0.77 1 1 0.82

Table 6.6.: Classification metrics for the qGAN approach with 2 features on a real
hardware.
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The quantum generator is made of 10 repetitions of single-qubit RY gates and two-
qubit CZ. The quantum discriminator acts on 8 qubits and is of the form of 3.4.
Every optimization is done with Qiskit. The training of the discriminator is made with
batches of 30 data points from the full data set of 100 points. Plus, we use 15 times
more optimization iterations for the discriminator. We simulate the results in a noiseless
simulator and in a noisy simulator.

a. Noiseless simulations

The training corresponds to the Algorithm. 2. In our case, we optimize the qGAN
structure with AMSGRAD [38], a learning rate of 10−3 and (β1, β2) = (0.7, 0.99) and
during 500 epochs. As in the classical case, the generator and discriminator loss functions
quickly converge to a fixed value and do not evolve after 100 epochs, which is faster
compared to the case with 2 features (see Fig. 6.17). As stated in the classical benchmark,
the best learning behavior is not the goal of this thesis, as long as classification is possible.
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Figure 6.17.: Loss function of the quantum GAN using statevector with 8 features.
The blue curve corresponds to the generator loss function and the red one corresponds
to the discriminator loss function.

We then repeat the procedure of the quantum anomaly detection scheme with 8 fea-
tures. Each anomaly score value is obtained by the evaluation of both the fidelity
between the embedded state |x〉 of the testing data set and the trained generator state
|G〉 and of discriminator score. This is done for every α ∈ [0, 1] to find the configuration
giving the best AUC score (see left panel of Fig. 6.18). Contrary to the classical case,
the optimal configuration is obtained for α = 0.25 that yields an AUC score of 0.78 (see
right panel of Fig. 6.18). In this setup, as in the classical benchmark, the SM anomaly
score values are concentrated in the region [0, 0.05] while the anomalous data points
are mostly concentrated in the region [0.05;0.35]. However, the Higgs and the Graviton
anomaly scores still have a strong overlap with the non-anomalous data points. The
main difference between the classical and quantum settings is that in the classical set-

46



3. Quantum benchmark

ting, all of the Higgs data points overlap with the SM and with the Graviton. In the
quantum case, a small portion of the anomalous data points overlaps with all of the
SM. This explains the high classification scores (see Table. 6.7) and the ROC curve (see
Fig. 6.19). In this case, we can see that the quantum simulation gives similar results to
the best classical one (a AUC score of 0.78 for the classical versus 0.77 for the quantum).
However, except for the precision score (0.67 for the quantum setting versus 1 for the
best classical), the classification metrics score are higher in the quantum setting than
in the best classical one (see Table. 6.7): the F1 score and the recall score are more
important than for the classical setting (0.67 versus 0.33 for the F1 score and 1 versus
0.22 for the recall score). The accuracy of both setting are almost equal to 0.72. Since
these quantum scores gives similar or even slightly better than with 2 features, it hints
that as we increase the number of features, the classification scores can yield a better
anomaly detection. As with 2 features, these simulation are obtained for a subset of the
data set used for the classical benchmark. It indicates that the quantum algorithm can
give similar or even better results despite learning on a smaller amount of data points.
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Figure 6.18.: Quantum anomaly score scheme with 8 features using a noiseless sim-
ulator. (a) shows the anomaly score mean w.r.t. to the α parameters. The optimal
configuration α = 0.25 is shown in the right panel (b) for the whole testing data set.
In all plots, the blue points correspond to the SM data points and the area corresponds
to the 95%-confidence interval. The orange points correspond to the Graviton data
points and the orange area the 95% confidence interval and in orange the discriminator
loss function. The green point correspond to the Higgs data points and the green area
denotes the 95% confidence interval.

b. Noisy simulator

As with 2 features, we also simulate the qGAN training in a noisy simulator that mimic
the behavior of a quantum device. The training is done with an increased learning rate
of 10−2, 1024 shots and for 100 shots. As observed in the noiseless case and in the
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Framework F1 score Accuracy Precision Recall ROC-AUC
Noiseless quantum 0.67 0.72 0.67 1 0.77

Best classical 0.33 0.71 1.0 0.22 0.78

Table 6.7.: Classification metrics for the qGAN approach with 8 features on a noiseless
simulator compared with the best classical classification metrics.
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Figure 6.19.: ROC curve in 8 features of the best classical GAN architecture and of
the noiseless quantum simulations. In this case, the classical framework gives similar
results than with the quantum setting.

48



3. Quantum benchmark

classical benchmark, the loss functions converge to the same value but stop to evolve
after 20 epochs (see Fig. 6.20).
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Figure 6.20.: Loss function of the quantum GAN using a noisy simulator with 8 fea-
tures. The blue curve corresponds to the generator loss function and the red one corre-
sponds to the discriminator loss function.

As before, once the qGAN is trained on the non-anomalous SM data set, we compute
the anomaly score on the testing data set. Each term of the score is computed using
10,000 shots. This high number of shots is used to approach as much as possible the
behavior of the exact noiseless simulations. The anomaly score is computed for each α-
value to maximize the AUC score (left panel of Fig. 6.21). As in the noiseless simulations,
the optimal configuration is obtained for α = 0.25 yielding a AUC score of 0.75 (right
panel of Fig. 6.21). In this setup, the SM data point gather in the region [0, 0.05] while
the anomalous data points are spread in the region [0.05, 0.32] while still having an
overlap with the non-anomalous data points. However, contrary to the classical case,
there is no point lying in the region [0.05, 0.26], hinting that it would be straightforward
to separate the SM and the anomalous data points. This explains the relatively high
AUC score (see Fig. 6.22). As stated in the noisy simulation case with 2 features, as the
number of shots is finite, we expect to have similar or slightly lower classification scores
than in the noiseless setting (see Table. 6.8 and Fig. 6.22). Even in this configuration,
except for the precision as in the noiseless case, every classification metrics in the noisy
setting are better than for the best classical simulation: the F1 score and the recall
are still higher (0.67 versus 0.33 for the F1 score and 1 versus 0.22 for the recall), the
accuracy is still equivalent in all cases (0.69 versus 0.71). As with 2 features, we can
hope that using more shots to compute the anomaly score and for the training of the
qGAN could yield even more similar results than in the noiseless case. As we used the
same data in both noiseless and noisy setting, a natural extension to this work would
be to use more data points for both the training and the testing data set to see whether
the performance of the qGAN based anomaly detection scheme is better.
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Figure 6.21.: Quantum anomaly score scheme with 8 features on a noisy simulator. (a)
shows the anomaly score mean w.r.t. to the α parameters. The optimal configuration
is shown in the right panel (b) for the whole testing data set. In all plots, the blue
points correspond to the SM data points and the area corresponds to the 95%-confidence
interval. The orange points correspond to the Graviton data points and the orange area
the 95% confidence interval and in orange the discriminator loss function. The green
point correspond to the Higgs data points and the green area denotes the 95% confidence
interval.

Framework F1 score Accuracy Precision Recall ROC-AUC
Noiseless quantum 0.67 0.72 0.67 1 0.77

Noisy quantum 0.67 0.69 0.55 1 0.75
Best classical 0.33 0.71 1.0 0.22 0.78

Table 6.8.: Classification metrics for the qGAN approach with 8 features on a noisy
simulator compared to the noiseless quantum simulation and to the best classical clas-
sification metrics.
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Figure 6.22.: ROC curve in 8 features of the noisy quantum simulations compared to
the best classical GAN architecture and to the noiseless quantum simulations. In this
case, the classical framework gives similar results than with the quantum setting.

3.3. Comparison of the different performances w.r.t. dimensions

As in the classical case, due to the difficulty of an efficient training, qGAN do not
significantly improve their performance when increasing the number of features. We
perform the anomaly detection scheme for every feature between 2 and 8 features. The
more features we add to the simulations, the more resources we need to efficiently perform
the classification between anomalies and non-anomalous data points. In every quantum
experiment, we use a smaller data set of 100 data points of the full data set of 1000 points
used for the classical simulations. The training of the discriminator is always performed
with batches of 30 points. We can see that as we increase the number of features, the
classification metrics of the noiseless and noisy quantum setting remain slightly the same
(see Table. 6.9 and Fig. 6.23).

For the classical case, we can see that from 2 to 5 features, the classification metrics
increase and decrease from 5 to 8 features. However, since the quantum scores remain
stable or slightly increase, we can see that it is possible to find a setup where the quantum
setting outperforms the classical case: with 8 features, almost all classification metrics
for the noiseless and noisy simulations are higher than for the best classical case. The
precision, however, remains under for the quantum setting (approximately 0.6 versus 1
in the classical case). Since the data sets used for the quantum approach are subsets of
the ones used for the classical one, a natural extension is to study the influence of the
size of the batch size.

Number of parameters Another study can also be made in the scalability of this
approach by looking at the number of parameters. This is studied in the Table. 6.10.
This method requires a linear circuit depth for the discriminator and a bigger circuit
depth for the generator. More research has to be made to reduce the gate-count and the
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Dimensions Simulations F1 score Accuracy Precision Recall ROC-AUC

2 features
Noiseless 0.69 0.74 0.61 1 0.79

Noisy 0.55 0.67 0.47 1 0.52
Best classical 0.65 0.77 1 1 0.82

3 features
Noiseless 0.69 0.71 0.53 1 0.78

Noisy 0.74 0.78 0.61 1 0.79
Best classical 0.75 0.84 1 1 0.90

4 features
Noiseless 0.67 0.67 0.5 1 0.74

Noisy 0.67 0.70 0.56 1 0.76
Best classical 0.74 0.84 1 1 0.90

5 features
Noiseless 0.62 0.74 1 1 0.76

Noisy 0.63 0.75 1 1 0.74
Best classical 0.96 0.97 1 1 1

7 features
Noiseless 0.67 0.74 0.6 1 0.79

Noisy 0.66 0.75 0.75 1 0.81
Best classical 0.79 0.73 1.0 1 0.89

8 features
Noiseless 0.67 0.72 0.67 1 0.77

Noisy 0.67 0.69 0.55 1 0.75
Best classical 0.33 0.71 1.0 0.22 0.78

Table 6.9.: Best classification score obtained in the quantum framework on noiseless
and noisy simulations and in the classical case for each dimension between 2 and 8
features.
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Figure 6.23.: ROC Curve for different dimensions in the quantum setting with noiseless
simulations (a) and noisy simulations (b).
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circuit depth of both generator and discriminator in order to find shallower circuits to
get similar or even better results than in the framework presented in this thesis.

Dimensions Parameters Generator Discriminator

2 features
Number of qubits 2 3

Gate count 6 Ry 4 CZ 12 single-qubit, 2 CX
Circuit depth 6 9

3 features
Number of qubits 3 3

Gate count 12 Ry and 9 CZ 12 single-qubit, 2 CX
Circuit depth 14 9

4 features
Number of qubits 4 4

Gate count 28 Ry, 24 CZ 15 single-qubit, 3 CX
Circuit depth 32 10

5 features
Number of qubits 5 5

Gate count 30 Ry, 25 CZ 18 single-qubit, 4 CX
Circuit depth 32 11

6 features
Number of qubits 6 6

Gate count 54 Ry, 48 CZ 21 single-qubit, 5 CX
Circuit depth 58 12

7 features
Number of qubits 7 7

Gate count 70 Ry, 63 CZ 24 single-qubit, 6 CX
Circuit depth 74 13

8 features
Number of qubits 8 8

Gate count 88 Ry, 80 CZ 27 single-qubit, 7 CX
Circuit depth 92 14

Table 6.10.: Number of trainable parameters in the quantum framework
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7. Conclusion

In this work, we present an approach that uses generative modeling in order to detect
BSM anomalies in HEP data sets. They consist of measurement results of experiments
conducted at the LHC. These experiments can be seen as a black box whose principle is
governed by quantum physics. Since the underlying process is quantum, we investigate
if the modelling of the process can be done with generative learning based on a quantum
ansatz, specifically with qGANs. A qGAN is a generative QML algorithm consisting
of the alternative training of two quantum circuits: a quantum generator which gen-
erates new data instances and a quantum discriminator which labels a quantum state
as drawn from the data set or not. Both generator and discriminator are represented
by parametrized quantum circuits. The generator is a quantum channel providing a
native model for the physical process of HEP. The quantum discriminator classifies by
measuring a single qubit, which mainly helps to reduce measurement errors and to avoid
having a global objective function which leads to barren plateaus [52, 53]. Compared to
other approaches [4], one advantage of the presented approach is to use a fully quantum
setup, with both a quantum generator and discriminator. Unlike other approaches, this
method does not rely on a randomness prior given as low-dimensional latent variables
which would have to be optimize during the anomaly detection scheme. The training
of the qGAN is done on a data set made of data points embedded in a quantum state
using angle encoding. This specific choice of embedding has the advantage of supporting
continuous input variables and requiring only constant-depth O(1) circuits. On the con-
trary, a basis encoding could be more relevant if we need a one-to-one mapping between
classical data and a quantum state. Notably, angle encoding distorts the data which
does not enable to map a certain basis state to a data point. A qGAN, trained on the
SM data set, can then be used to identify HEP processes that do not conform with the
SM. The classification is based on an anomaly score, which serves as a distance measure
between SM events and the events of interest. We verify the proposed anomaly detection
scheme by identifying Higgs and Graviton events. From the point of view of the qGAN,
the Higgs and Graviton events represent BSM processes, as they were not included in
the SM data set used during the training of the qGAN.

All simulations of a qGAN are done with an ideal noiseless and noisy simulator. The
anomaly detection algorithm is also run on hardware for 2 features. We conducted
experiments with up to 8 input features and compared the qGANs to classical GANs,
using the same number of trainable parameters in both cases.

In this work, we found that the proposed quantum anomaly scheme with 2 features
gives slightly worse classification results than in the best classical case in a noiseless
simulation. In our case, the noise introduced by the quantum hardware gives a worse
performance than for the noiseless for an efficient classification. Increasing the number
of shots would help us to approach the results from the noiseless simulations. For the
classical setting, we observe that from 2 to 5 features, the anomaly detection gets better
and depreciates from 5 to 8 features. This might be due to the fact that the more features
we had to the model, the harder it is to train the model. However, in the quantum case,
the performance of the algorithm remains similar or slightly better as we increase the
number of features. In particular, with 8 features, the quantum model can outperform
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the best classical results by giving a F1 score of 0.67 compared to the 0.33 obtained in
the best classical case. Notably, the qGANs and classical benchmarks achieved similar
performances, although the qGAN used much less training data. This motivates future
studies on the influence of required number of data points to train classical respectively
quantum models.

The classical and quantum anomaly scheme differ by how they are implemented. Clas-
sical anomaly detection requires an optimization of the anomaly loss function for each
testing data while the quantum case only requires the measurement of quantum circuits.

However, better quantum performance could be reached with a better tuning of the
different hyperparameters (optimizer parameters, ratio between the number of generator
and discriminator iteration steps). A natural extension to this work would be to scale up
the results on IBM processors when better hardware is available. Then, we could couple
this qGAN system to a variational auto-encoder or to other discriminators in order to
improve the performance of the classification.

While here we mainly focus on the detection of anomalies, this qGAN framework
could be modified to facilitate the generation of events beyond the standard model:
once trained on the SM, one could try to generate events on an orthogonal channel for
the learned data representation. In doing so, it could be possible to generate anomalies
from the SM data set.

Moreover, this work sets the ground for future investigations towards finding a poten-
tial quantum advantage for anomaly detection in a HEP data set. Firstly, a quantum
approach is useful if there are quantum correlations in the data sets. In principle, this is
measurable using Bell’s triangle inequalities [109]. These correlations could potentially
be efficiently captured with the proposed anomaly detection scheme. This quantum
advantage could also be studied with the effective dimension [70]. This metric gives
an useful insight on the expressibility of quantum neural network. This could help de-
veloping a better understanding of potential advantages of QML compared to classical
ML.
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